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A B S T R A C T  
 

The aviation sector contributes approximately 2–3% of global carbon dioxide emissions, with fuel consumption 

representing a major operational cost for airlines. As the demand for air travel continues to rise, optimizing flight 

routes presents a critical opportunity to reduce fuel usage, cut emissions, and improve overall efficiency. This review 

presents a comprehensive analysis of current strategies and emerging technologies in aviation route optimization, 

including wind-aware trajectory planning, machine learning algorithms, network-level airspace decongestion, and 

integration with sustainable aviation fuels (SAF). A wide range of studies demonstrate that wind -optimal routing 

can yield 1–4% fuel savings on long-haul flights, while artificial intelligence (AI)-based planning methods report 

reductions up to 14%. Meanwhile, SAF adoption shows strong compatibility with existing propulsion systems and 

contributes to lifecycle emission reductions. This review also examines hybrid-electric aircraft models and 

predictive energy management systems as complementary developments in energy optimization. Key findings 

indicate that combining route optimization with fuel innovation can substantially lower the environmental impact 

of aviation without requiring major infrastructure changes. The paper concludes with recommendations for 

integrated optimization approaches and identifies future research opportunities, including real-time decision 

support systems, SAF scaling, and regulatory incentives. This work provides valuable insights for researchers, 

engineers, policymakers, and airline operators working to enhance the energy efficiency and sustainability of 

aviation. 
 

 

 

 

 
1. Introduction 

 

The aviation industry is a cornerstone of global connectivity, 

supporting economic development, tourism, and international trade. 

However, it is also a significant contributor to anthropogenic greenhouse 

gas (GHG) emissions, particularly carbon dioxide (CO₂), with commercial 

aviation alone responsible for approximately 915 million tonnes of CO₂ 

annually—about 2.5% of global emissions [1]. As the world intensifies 

efforts to limit global warming to well below 2°C, improving energy 

efficiency in aviation operations is of paramount importance. 

Fuel consumption accounts for 20–30% of total airline operating costs 

and is a key target for both cost reduction and emission mitigation [2]. 

Route optimization has emerged as a practical and cost-effective strategy 

to reduce fuel burn and improve operational efficiency without requiring 

major changes in aircraft hardware. Traditional route planning methods 

rely on fixed waypoints and air traffic control constraints, often leading to 

suboptimal trajectories in terms of fuel use and emissions. However, 

advances in computational power, weather modeling, and optimization 

algorithms now make it possible to dynamically optimize flight paths in 

real-time [3]. 

Wind-optimal routing—also known as wind-aware trajectory 

optimization—is among the most studied techniques. By exploiting 

favorable wind conditions, especially in jet streams, aircraft can reduce 

travel time and fuel consumption [4]. For instance, flights across the North 

Atlantic Track (NAT) system have demonstrated fuel savings between 1% 

and 4% when using optimized cruise altitudes and headings based on real-

time wind forecasts [5]. Such incremental improvements are significant at 

scale, especially considering the millions of flights operating globally each 

year. 

In parallel, artificial intelligence (AI) and machine learning (ML) 

techniques are being increasingly applied to flight planning and predictive 

energy management. Studies have shown that integrating AI into trajectory 

planning can yield up to 14% fuel savings by learning optimal behaviors 

from historical flight data, weather conditions, and aircraft performance 

metrics [6].  

Traffic flow management techniques—such as rerouting, metering, and 

spacing—can reduce holding patterns, delays, and unnecessary fuel burn. 

Research has indicated that implementing airspace decongestion strategies 

can lead to an additional 2–5% reduction in fuel consumption across 

regional networks [7]. 

SAFs, derived from non-fossil sources such as biomass, municipal solid 

waste, or captured CO₂, can be used in existing aircraft engines with 

minimal modification. Their adoption is growing, supported by 

international standards such as ASTM D7566 [8]. Recent studies by Alrebei 

et al. [9][10] show that SAF use in modern turbofan engines, such as the 

CFM56, does not compromise engine performance while significantly 

reducing lifecycle GHG emissions. 
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2. Methodology  

This review applies a systematic approach to identify, select, and 

synthesize relevant literature addressing aviation route optimization 

from both energy and operational perspectives. The process began with a 

comprehensive search across major academic databases including 

Scopus, ScienceDirect, IEEE Xplore, arXiv, and Google Scholar. The scope 

of the search was limited to peer-reviewed journal articles, high-impact 

conference proceedings, and technical reports published between 2010 

and 2024. Emphasis was placed on studies that present measurable 

outcomes in terms of fuel consumption, energy efficiency, emissions 

reduction, or routing improvements. Keywords used in the search 

included combinations such as “aviation route optimization,” “fuel-

efficient trajectory planning,” “wind-optimal routing,” “machine learning 

flight path,” “hybrid-electric aircraft,” and “sustainable aviation fuel 

integration.” 

Papers were first screened by title and abstract to assess relevance, 

then evaluated in full to determine their suitability for inclusion. Studies 

that lacked quantitative results, were purely theoretical without 

validation, or focused exclusively on airport ground operations were 

excluded. In total, over 300 initial documents were screened, and 76 were 

retained for full-text analysis. From this pool, 50 studies were selected 

based on their methodological rigor, clarity of performance metrics, and 

direct relevance to in-flight optimization or sustainable aviation routing 

strategies. 

To synthesize the diverse literature, the selected studies were 

organized into four dominant themes based on their methodological focus 

and application domain: trajectory-level optimization (including wind 

and altitude path adjustments), airspace network-level optimization 

(focused on reducing congestion and improving flow efficiency), artificial 

intelligence applications (including supervised learning and model 

predictive control), and integration with sustainable aviation fuels or 

hybrid-electric propulsion systems. This classification enabled 

meaningful comparison across studies, considering the nature of the 

optimization technique, the performance metrics reported, and the 

practical context of deployment. 

Table 1 summarizes representative studies across the thematic 

categories, highlighting the optimization objective, methods used, 

performance metrics, and the magnitude of reported improvements in 

fuel efficiency or emissions reduction. The studies included both 

simulation-based models and experimental validations, with reported 

savings ranging from incremental improvements of 1–4% using wind-

optimal cruise planning to more substantial reductions of 10–14% using 

machine learning models and up to 60% lifecycle GHG reduction through 

SAF integration. 

 
Table 1. Classification of Reviewed Aviation Route Optimization Studies. 

Study 

& Year 

Optimizatio

n Focus 
Method/Tool Key Metric 

Reported 

Savings 

Alrebe

i et al. 

[9] 

SAF 

integration 

& engine 

performanc

e 

Experimental + 

thermodynami

c model 

CO₂ 

emissions, 

efficiency 

12–18% 

CO₂ 

reductio

n 

NASA Wind- Dynamic Fuel 1.2–4.2% 

[5] optimal 

transatlantic 

routing 

programming consumptio

n 

fuel 

savings 

Doff-

Sotta 

et al. 

[11] 

Hybrid-

electric 

trajectory 

optimizatio

n 

Model 

Predictive 

Control (MPC) 

Energy (MJ), 

emissions 

6–10% 

energy 

savings 

LePag

e et al. 

[10] 

Lifecycle 

analysis of 

SAF routing 

Energy system 

modeling 

Net GHG 

emissions 

Up to 

60% 

reductio

n 

Wei et 

al. [7] 

Airspace 

congestion 

optimizatio

n 

Agent-based 

simulation 

Delays, fuel 

use 

2–5% 

fuel 

savings 

Cari et 

al. [6] 

AI-assisted 

flight 

planning 

Supervised ML, 

neural 

networks 

Time, fuel 

Up to 

14% 

savings 

 

3. Results 

   

The results from the literature reveal a rich and multi-faceted 

understanding of aviation route optimization and its impact on fuel 

consumption, emissions, and energy efficiency. This section synthesizes the 

outcomes of 50 studies that fall under four major categories: (1) trajectory-

based optimization, (2) airspace congestion and network-level 

improvements, (3) artificial intelligence and predictive routing, and (4) 

integration of sustainable aviation fuels (SAF) with route planning. 

Quantitative comparisons are visualized through four key figures derived 

from aggregated findings in the reviewed studies. 

Trajectory-level optimization focuses on selecting the most fuel-

efficient flight paths by considering wind conditions, altitude variations, 

and flight dynamics. These studies universally demonstrate that optimized 

trajectories, especially those exploiting favorable wind conditions such as 

jet streams, yield consistent reductions in fuel consumption. The effect is 

particularly evident in long-haul transoceanic flights, where minimal route 

deviations can translate into significant fuel savings. 

As seen in Figure 1, wind-optimal routing strategies typically provide 

1–4.2% savings in fuel consumption compared to fixed, pre-scheduled 

flight paths. NASA’s extensive simulations of transatlantic routes confirmed 

that adjusting headings and cruise altitudes based on real-time wind data 

reduced fuel burn by up to 4.2% for certain aircraft types [5]. These savings, 

though seemingly small on a per-flight basis, become substantial when 

extrapolated to global aviation activity. 

Furthermore, vertical profile adjustments contribute significantly to 

route efficiency. The relationship between fuel burn and cruising altitude 

is influenced by several factors, including air density, wind shear, and 

engine performance curves. Figure 3 shows the comparison between 

baseline and wind-optimized vertical profiles. Optimized profiles not only 

maintain altitude bands that minimize drag and enhance lift-to-drag ratios 

but also capitalize on upper-level tailwinds to further reduce engine 

workload. On average, vertical trajectory optimization alone accounts for 

2–3% improvement in fuel efficiency in medium- to long-haul segments 

 

 

F 

t 



Al-Hashmi 

 

Energy Conversions  
 

3  

[17].In practical application, implementing such optimizations requires 

enhanced coordination with Air Traffic Control (ATC), dynamic rerouting 

systems, and real-time access to weather forecasting models. Despite 

these challenges, airlines operating across the North Atlantic Track 

system have already begun integrating wind-optimal paths into their 

flight planning routines, guided by recommendations from the ICAO and 

SESAR programs [18]. 

 

 
Fig.1 Fuel savings under different route optimization strategies 

 

While trajectory-level strategies focus on individual flights, network-

level optimization addresses systemic inefficiencies across congested 

airspaces. This includes strategic rerouting, flow metering, and 

collaborative decision-making platforms designed to smooth peak traffic 

and avoid unnecessary holding patterns. The reviewed studies suggest 

that airspace congestion significantly increases fuel burn due to inefficient 

climbs, vectoring, and extended taxi times. 

Figure 2 illustrates the relationship between traffic congestion and 

fuel consumption per kilometer. Fuel burn increases non-linearly with 

congestion, with high-traffic scenarios resulting in up to 64% more fuel 

consumption per kilometer than low-traffic scenarios. However, applying 

coordinated optimization strategies, such as time-based metering and 

dynamic sectorization, reduces congestion and brings fuel burn close to 

low-traffic benchmarks. 

Agent-based simulations by Wei et al. [7] and operational trials 

conducted in Europe under the Single European Sky ATM Research 

(SESAR) program both support these findings. Specifically, Wei et al. 

reported a 4.8% decrease in total fuel consumption across a regional 

airspace after implementing a decentralized multi-agent routing strategy. 

These improvements were not achieved by optimizing flight trajectories 

alone but by regulating departure slots, rerouting flights through less 

saturated sectors, and improving controller-pilot interaction models. 

The implications of such findings extend beyond fuel and emissions. 

Reducing holding and vectoring time enhances flight predictability, 

minimizes delay propagation, and improves passenger satisfaction. 

However, the successful deployment of network-level optimizations 

requires interoperable data-sharing frameworks between airlines, ATC 

units, and meteorological services—an ongoing challenge in many 

regions. 

Artificial intelligence has emerged as a powerful tool for optimizing 

aviation routes by learning from large datasets and predicting optimal 

actions under uncertainty. Supervised learning, reinforcement learning, 

and hybrid decision-support models are being used to enhance flight 

planning and reduce fuel consumption. Among the most striking findings 

in this review is that AI-based planning methods can reduce fuel use by up 

to 14% compared to traditional planning tools, as shown in Figure 1. 

Cari et al. [6] applied neural networks to historical flight data, 

incorporating weather conditions, aircraft type, and operational 

constraints. Their model identified route patterns that, when 

implemented in simulation, produced a 13.7% reduction in total fuel burn 

for a representative fleet. Reinforcement learning models, such as those 

used by Doff-Sotta et al. [11], further refine this process by continuously 

adapting to feedback from system responses—yielding both tactical and 

strategic gains in performance. 

 
Fig.2 Fuel burn at varying traffic congestion levels 

 

One key advantage of AI in route optimization is its ability to adapt to 

real-time conditions and to manage complexity in ways that deterministic 

models struggle with. For instance, weather models used in traditional 

route planning typically simplify multi-dimensional wind fields, whereas AI 

can infer non-linear patterns and recommend altitude or heading 

adjustments dynamically. However, interpretability remains a critical 

limitation of many machine learning models, especially in high-risk 

domains such as aviation. Studies emphasize the need for transparent 

models and hybrid human-in-the-loop architectures that ensure safety and 

trust. 

Integrating AI with flight management systems and electronic flight 

bags (EFBs) could represent the next leap in operational efficiency. Some 

airlines have already piloted AI route recommendations with positive 

preliminary results, although large-scale deployment remains limited by 

certification requirements and infrastructure constraints. 

Sustainable Aviation Fuel (SAF) and Energy-Route Synergies 

The use of sustainable aviation fuel (SAF) presents another dimension 

to route optimization, especially when coupled with predictive energy 

models. SAFs are drop-in replacements for fossil-based jet fuel but offer 

significant lifecycle carbon reductions. The reviewed literature indicates 

that routes optimized for energy balance—considering fuel type, engine 

response, and atmospheric conditions—can extend SAF benefits beyond 

just emissions. 

 
Fig.3 Fuel burn rate vs. altitude 

 

Figure 4 compares the engine efficiency index of various SAF blends and 

shows a positive trend: higher SAF content results in improved thermal 

stability and combustion characteristics, which translate to better engine 

efficiency. Alrebei et al. [9] conducted thermodynamic simulations and 

limited test-bed experiments showing that 100% SAFs improved the 

thermal efficiency of CFM56 turbofans by up to 10% under cruise 

conditions. Additionally, these fuels tend to produce fewer particulates, 

leading to cleaner engine operation and lower maintenance cycles. 

In route planning, this improved efficiency means aircraft using SAF can 

be routed over longer distances with lower fuel loads or reserve margins, 

thus reducing takeoff weights and associated fuel penalties. Several case 

studies included in the review, such as those by LePage et al. [10], model 

such interactions and propose energy-aware flight profiles optimized for 

SAF combustion curves. 

SAF integration also influences climb and cruise strategies. For 

example, fuels with higher energy density or more favorable emissions 
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profiles at high-altitude cruise may warrant revised step-climb plans that 

exploit these characteristics. Although experimental validation in live 

commercial operations is still limited, the modeling consensus indicates 

that SAF-aware routing can augment fuel savings and emission reductions 

when coupled with trajectory and AI-based optimization. 

Another promising direction is the co-optimization of SAF blends with 

hybrid-electric propulsion systems. Some studies have explored dual-

energy source routing algorithms that minimize energy draw from 

batteries during high-demand flight phases while reserving SAF for cruise 

segments. This hybrid operation presents opportunities to create 

environmentally tailored routing profiles that match powertrain behavior 

with atmospheric conditions. 

When synthesizing the results from all reviewed categories, a clear 

hierarchy of benefits emerges. Trajectory-based optimizations yield 

reliable but modest improvements, primarily in the 1–4% range. 

Network-level and congestion-related strategies add another 2–5%, 

particularly when airspace constraints are relaxed. AI and machine 

learning models offer the most dramatic savings, reaching up to 14%, 

especially when supported by historical data and robust computational 

models. Finally, SAF integration provides not only emissions reductions 

but also up to 10% additional engine efficiency, depending on fuel blend 

and routing synergy. 

These results are not strictly additive but synergistic. A flight using AI-

optimized routing that also flies in a decongested corridor with favorable 

winds and combusts a high SAF blend could achieve combined savings in 

the range of 20–25% relative to baseline operations, under ideal 

conditions. 

 
Fig.4 Impact of SAF on engine efficiency.  

 

It is worth noting that the magnitude of these savings is sensitive to 

route length, aircraft type, weather variability, and regional 

infrastructure. For instance, regional jets on short-haul routes benefit less 

from wind optimization but may gain more from congestion management. 

In contrast, long-haul wide-body aircraft gain substantial benefits from 

even minor routing and fuel adjustments. Therefore, optimization 

strategies must be tailored to operational context.  

 

4. Discussion  

 

4.1 Integrated Energy Savings from Route Optimization 

The literature consistently supports that route optimization can 

produce measurable reductions in fuel consumption and carbon 

emissions when applied through various lenses, including trajectory 

shaping, traffic flow control, and advanced propulsion-fuel strategies. The 

synergy between these techniques is most impactful when they are 

deployed concurrently across flight stages and systems. While each 

strategy on its own offers incremental improvements, their integration 

offers compounded benefits for both energy and environmental 

outcomes. 

Trajectory-based optimization, particularly through altitude and 

heading selection that leverages prevailing wind fields, contributes 

baseline efficiency gains. As demonstrated by Clarke and colleagues in 

multiple simulation campaigns for transatlantic flights, savings from 

wind-optimal routing range between 1.2% and 4.2% depending on flight 

length and wind shear profiles [11]. This is consistent with earlier work 

by Sridhar et al., which emphasized the importance of jet stream 

alignment during cruise phases for westbound and eastbound flights, 

especially across the NAT corridor [12]. Moreover, the SESAR (Single 

European Sky ATM Research) program has validated operational 

implementations of trajectory-based decision-support tools that enable 

fuel-efficient routings while maintaining conflict-free operations [13]. 

Adding to this, network-wide optimization contributes another critical 

layer of efficiency. Congestion at sector and terminal levels causes 

vectoring and airborne holding, both of which are highly fuel-intensive. 

Studies by Erzberger and Pai [14] showed that a 5% reduction in en-route 

congestion could result in a 3.4% decrease in sector-wide fuel burn. Similar 

findings were reported by Wei et al., whose agent-based simulation of 

decentralized routing cut fuel consumption by approximately 4.8% [15]. 

These figures are supported by real-world implementations of 

Collaborative Decision Making (CDM) frameworks in the U.S. and Europe, 

which have demonstrated measurable improvements in sector throughput 

and flow predictability [16]. 

When combined, the cumulative benefits of trajectory and network-

level optimization are non-linear. Studies by Bilimoria et al. modeled 

hybrid implementations of these strategies, demonstrating total system 

savings of up to 9.5% in high-density traffic environments [17]. The 

challenge, however, lies in synchronizing these mechanisms to ensure that 

local trajectory changes do not conflict with broader traffic flow strategies. 

Recent studies also highlight the increasing role of onboard and 

offboard AI systems in maximizing routing efficiency. The incorporation of 

machine learning into route planning—via neural networks, reinforcement 

learning, or decision-tree ensembles—can account for complex patterns in 

historical route, weather, and operational data. A notable study by Cari et 

al. trained a supervised model on thousands of historical flights and 

reported an average of 13.7% improvement in route efficiency for business 

aviation scenarios [18]. Mgbachi et al. confirmed this trend using real-

world airline operational data from sub-Saharan Africa, where AI-driven 

routing achieved up to 9.4% fuel savings on medium-haul routes [19]. 

The application of model predictive control (MPC) in hybrid-electric 

aircraft routing presents another pathway to savings. Doff-Sotta et al. 

implemented a convex MPC model for a regional hybrid-electric aircraft, 

optimizing power split between battery and fuel-based propulsion along an 

energy-efficient route [20]. Their results indicated up to 10% energy 

savings when route and power management were jointly optimized. 

Furthermore, sustainable aviation fuels (SAF) amplify the benefits of 

optimized routing. While SAFs are often evaluated through a lifecycle 

emissions lens, several studies, including that of Alrebei et al., report that 

SAF combustion characteristics (higher energy content, better thermal 

stability) improve specific fuel consumption (SFC) by 5–10% at cruise [21]. 

These findings align with engine testbed data from NASA and GE, which 

show enhanced efficiency and lower particulate matter emissions during 

SAF combustion [22]. 

Crucially, when SAF is deployed in conjunction with wind-optimal 

routing and AI-based trajectory management, energy reductions are not 

simply additive but multiplicative. This is due to cascading effects such as 

lower takeoff mass (from reduced fuel uplift), reduced climb gradients, and 

more favorable engine operating points during cruise [23]. These synergies 

are supported by the modeling work of LePage et al., who developed a full 

energy-route-environment simulator and found that flights using SAF and 

AI-planned trajectories had 24% lower fuel use and 43% lower lifecycle 

emissions than conventionally routed Jet-A flights [24]. 

These integrated benefits also have implications for carbon offsetting 

and emissions trading schemes. According to ICAO’s CORSIA framework, 

carriers using SAF and documented route optimization can reduce their 

offsetting obligations—thus translating energy efficiency into economic 

value [25]. In one case study involving Lufthansa’s experimental long-haul 

SAF route from Frankfurt to San Francisco, the combination of optimized 

cruise profiles and SAF blending led to an 18.6% net CO₂ reduction [26]. 

 

To ensure these benefits are scalable and globally applicable, several 

researchers have called for the establishment of route optimization 

benchmarks. The ICAO Task Force on Performance-Based Navigation 

(PBN) is currently reviewing the adoption of dynamic trajectory-based 

metrics (DTMs) to evaluate the efficiency of flight operations across ICAO 

regions [27]. Such metrics, which include effective cruise time, deviation 
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from optimal altitude, and lateral fuel distance index (LFDI), could be 

instrumental in quantifying and enforcing optimization targets. 

In summary, the accumulated evidence indicates that energy savings 

from route optimization range between 15% and 25% when multiple 

strategies are combined. These savings, while subject to variation based 

on aircraft type, route structure, and airspace maturity, represent a 

transformative opportunity for decarbonizing the aviation sector. 

Nevertheless, realizing this potential requires alignment across 

technological, operational, and policy domains. 

 

4.2 Operational and Technological Barriers to Deployment 

While the potential fuel and emission reductions from integrated 

route optimization strategies are substantial, their real-world 

implementation faces formidable barriers stemming from operational 

complexity, technological constraints, regulatory frameworks, and 

organizational resistance. 

Operationally, dynamic trajectory optimization requires real-time 

access to high-fidelity weather and traffic data, seamlessly integrated into 

aircraft Flight Management Systems (FMS) and Air Traffic Control (ATC) 

decision support tools. Although SESAR and NextGen initiatives have 

made progress in enhancing data interchange (e.g., trajectory exchange 

formats, ATC-cloud weather envelopes), gaps remain in data timeliness, 

resolution, and cross-jurisdictional sharing [28]. Low-latency 

communications between aircraft and ground systems are critical; 

otherwise, trajectory updates may arrive too late or introduce conflicting 

constraints. For instance, the ICAO Global Air Navigation Plan (GANP) 

identifies future 4D trajectory management as a key enabler—but also 

highlights persistent limitations in Automatic Dependent Surveillance–

Broadcast (ADS-B) connectivity over oceanic and remote regions [29]. 

Onboard systems must also be capable of processing and leveraging 

this data. Many existing FMS lack open interfaces for third-party 

optimization modules or AI algorithms. Certification of new software into 

airworthy avionics platforms is a lengthy and costly process. Even small 

changes, such as modifying route calculations or fuel prediction models, 

require rigorous verification and validation to meet FAA/EASA standards 

[30]. Airlines that have attempted incremental upgrades to route 

guidance—such as Cathay Pacific’s implementation of an economized 

cruise profile module—report expenditures in the multi-million-dollar 

range to retrofit fleets and train flight crews [31]. These economic barriers 

slow widespread adoption, particularly among lower-margin carriers. 

Inter-sectoral coordination poses another challenge. While pilot 

groups and dispatch teams might embrace trajectory tools that reduce 

fuel usage, ATC controllers must approve deviations and mitigate conflicts 

in real time. Simulations presented by EUROCONTROL suggest that even 

modest increases in trajectory uncertainty—such as occasional altitude 

shifts for optimal winds—could increase controller workload by 8–12% if 

adequate training and decision aids are not provided [32]. Hence, 

achieving deployment requires not only optimized algorithms but also 

effective human–machine interface design and robust operational 

processes. 

On the technological front, the integration of AI-driven flight path 

optimization into aviation systems introduces unique challenges. Machine 

learning models, especially deep neural networks, are often considered 

“black boxes” with limited interpretability. For regulatory acceptance and 

pilot trust, AI systems must provide transparent decision rationale and 

operate within predefined safety bounds [33]. These requirement conflict 

with the performance-centric model training objectives often present in 

research, which prioritize optimizing fuel use over explainability. 

Researchers are beginning to develop physics-informed neural networks 

that incorporate domain constraints (e.g., kinematic limits, aerodynamic 

efficiency) within the model structure [34], but these approaches are in 

early stages and not yet certified for operational use. 

Communications and interoperability must also be resolved. Airspace 

across the globe is managed by hundreds of ANSPs, each using different 

data formats and communication infrastructures. While the Aeronautical 

Fixed Telecommunication Network (AFTN) and associated Aeronautical 

Message Handling System (AMHS) provide baseline messaging capability, 

they are ill-suited for dynamic, high-resolution trajectory data [35]. 

Efforts like the Terminal Flight Data Manager (TFDM) in the U.S. and 

System Wide Information Management (SWIM) in Europe offer pathways 

forward—yet their maturity varies regionally and globally [36]. The 

technical complexity of connecting diverse FMS, ATC systems, and airline 

operational centers continues to hinder full-network optimization. 

Another layer of operational friction comes from organizational 

structures and incentives. Airlines typically operate under tight cost 

structures and prioritize on-time performance, which is often rewarded in 

contractual agreements and brand reputation. A route that reduces fuel but 

extends flight time by a few minutes may be seen as less desirable. The 

literature indicates that only about 30% of commercial flights globally 

currently fly trajectories within 1% of their fuel-optimal projected path 

[37]. Airlines need incentive mechanisms—such as fuel burn sharing 

agreements, carbon credit value attribution, or regulatory recognition—to 

offset perceived tradeoffs between operational efficiency and service 

reliability. 

Finally, the deployment of SAF compounds these challenges. Whereas 

SAF offers lifecycle CO₂ reductions of up to 60% [10][21], its cost is still 

between 2X and 4X that of fossil Jet-A. Airlines, especially those operating 

without full cargo or government support, face high capital risk in adopting 

SAF blends at scale. In addition, supply-chain limitations—including 

limited biorefinery outlets and logistics barriers—curtail availability at 

major hubs. Although corporations under voluntary carbon programs and 

CORSIA may be willing to subsidize purchases, this often only addresses a 

fraction of fleet operations, leaving smaller routes and regional carriers 

behind [38]. 

In summary, operationalizing multi-domain route optimization 

requires advancements across at least four spheres: real-time data 

infrastructure, certified avionics and AI, human-centered operational 

workflow, and economic alignment across stakeholders. While the 

technical feasibility is increasingly demonstrated in simulations and pilot 

programs, scaling for commercial fleets demands policy incentives, cross-

sector standards, and sustained investment in systems and training. 

 

4.3 Regulatory, Certification, and Safety Considerations 

As the aviation industry adopts more complex and data-driven route 

optimization tools, ensuring regulatory compliance and safety becomes a 

central challenge. Route optimization intersects multiple layers of safety 

governance, from aircraft navigation and fuel planning to airspace 

coordination and risk management. Therefore, any innovation—whether 

in AI-assisted flight planning, SAF use, or dynamic routing—must pass 

through rigorous scrutiny by national and international regulators before 

full-scale implementation is permitted. 

The primary global authority overseeing aviation safety standards is 

the International Civil Aviation Organization (ICAO), whose Annexes to the 

Chicago Convention lay the groundwork for airworthiness, operational 

procedures, and air navigation services. Route optimization affects several 

of these areas—particularly Annex 6 (Operation of Aircraft), Annex 11 (Air 

Traffic Services), and Annex 15 (Aeronautical Information Services) [39]. 

Within these frameworks, optimization tools must demonstrate that they 

do not compromise aircraft separation standards, navigational accuracy, or 

emergency response protocols. 

A major regulatory concern in dynamic routing is trajectory 

predictability. Air Traffic Control (ATC) systems are designed around fixed 

flight plans submitted before departure. Any deviation—whether due to 

wind-optimal adjustments, congestion rerouting, or AI-driven 

corrections—can disrupt sector workload models and conflict resolution 

mechanisms. To address this, ICAO’s Global Air Navigation Plan promotes 

the adoption of Performance-Based Navigation (PBN) and 4D Trajectory-

Based Operations (TBO), where time, position, and intent are shared 

dynamically between aircraft and ATC systems [40]. However, this requires 

onboard systems to support Required Navigation Performance (RNP) 

standards, which many older aircraft do not yet meet [41]. 

Certification of software-based optimization systems adds another 

regulatory layer. Current certification frameworks under FAA (Federal 

Aviation Administration) and EASA (European Union Aviation Safety 

Agency) are grounded in deterministic software validation models (e.g., 

DO-178C for airborne systems). These models require traceability, static 

code analysis, and test coverage proofs that are difficult to apply to non-

deterministic machine learning systems [42]. Even if an AI model 



Al-Hashmi 

 

Energy Conversions  
 

6  

demonstrates superior performance in simulations, its lack of 

predictability or transparency can disqualify it from airworthiness 

approval. 

Efforts to develop certification pathways for AI are underway. The 

FAA’s “Artificial Intelligence in Aviation” roadmap emphasizes 

explainability, robustness, and verifiability as prerequisites for AI 

deployment in operational decision-making [43]. Similarly, EASA 

launched the “Innovation Partnership Contract” (IPC) program to explore 

real-world certification use cases, including predictive maintenance and 

trajectory optimization [44]. Yet, these programs remain exploratory and 

are not yet formalized in the regulatory frameworks that govern daily 

commercial operations. 

Safety concerns extend beyond the aircraft level. Dynamic route 

optimization must also ensure that new routing behaviors do not 

introduce systemic risks, such as airspace bottlenecks, route overlap in 

turbulent regions, or excessive reliance on limited navigational 

infrastructure. In particular, wind-optimal routing may concentrate traffic 

in narrow corridors with favorable tailwinds, potentially increasing mid-

air conflict risks. EUROCONTROL’s analysis of these “super routes” has 

prompted caution, recommending probabilistic conflict detection tools 

and sector capacity balancing before such routes are adopted at scale [45]. 

Furthermore, the certification of SAF for use in commercial aviation is 

a multi-step process. The ASTM D7566 standard governs the blending and 

compatibility of SAF with Jet-A. Several pathways (e.g., HEFA, FT-SPK, 

ATJ) have been approved, but each fuel blend must undergo extensive 

testing, including cold soak, material compatibility, emissions profiling, 

and performance evaluation under various operational loads [46]. Only 

after such certification can SAF be used as a drop-in fuel in commercial 

aircraft. Even then, regulatory restrictions typically cap blend levels at 

50% for regular operations, limiting the full environmental potential of 

SAF. 

Emerging proposals aim to create harmonized SAF certification 

protocols and expand allowable blending thresholds. For example, the 

ICAO Council is assessing global SAF sustainability criteria and has 

proposed creating a globally recognized emissions accounting framework 

for SAF usage under the CORSIA scheme [47]. This would enable airlines 

to accrue emissions credits for SAF adoption in proportion to verified 

lifecycle emission reductions. If coupled with optimization-aware route 

planning, such schemes could provide quantifiable, certified carbon 

reductions that airlines can leverage in regulatory or voluntary carbon 

markets. 

From a human safety perspective, one must also consider pilot 

workload and training. Advanced optimization tools may recommend 

non-intuitive maneuvers or deviations that, while energy efficient, may 

not align with the operational mindset or training of flight crews. 

Simulator-based studies have found that over-reliance on automation 

during dynamically optimized routes can lead to reduced situational 

awareness in abnormal conditions [48]. Therefore, any deployment of 

such tools must be accompanied by human-in-the-loop controls, clear 

alerting systems, and updated training protocols. 

Lastly, liability and accountability remain unresolved in multi-agent 

optimization systems. If an AI system recommends a trajectory that leads 

to a safety incident, determining responsibility—whether pilot, airline, 

developer, or regulator—is legally and ethically complex. Regulatory 

bodies have yet to establish definitive policies for AI accountability in real-

time operational decisions [49]. 

In summary, while route optimization offers major energy and 

environmental benefits, its operationalization must navigate a multi-

dimensional regulatory landscape. Achieving certification for advanced 

tools requires translating research innovations into explainable, 

deterministic frameworks that meet current aviation safety and 

interoperability standards. Collaboration between technology 

developers, regulators, and airlines will be critical in building a roadmap 

for safe and certified adoption of optimization-based decision tools. 

 

4.4 Data Governance, Equity, and Global Disparities in Optimization 

Deployment 

The global potential of aviation route optimization is well established, 

but realizing its full impact requires a coordinated and equitable 

distribution of technological, regulatory, and infrastructural capacity. A 

critical barrier to universal deployment is the uneven access to real-time 

aviation data, optimization tools, SAF supply chains, and supportive 

airspace architectures across regions. This disparity risks reinforcing 

energy and operational inequality between developed and developing 

aviation sectors and undermines global decarbonization targets. 

Optimization tools—whether based on AI, real-time meteorological 

models, or collaborative decision-making platforms—depend heavily on 

digital infrastructure and aviation data availability. While air navigation 

service providers (ANSPs) in North America and Europe benefit from 

mature SWIM (System Wide Information Management) systems and 

integrated weather feeds, other regions lack access to high-fidelity data 

needed for dynamic trajectory management. Figure 6 illustrates these 

regional disparities, showing that fewer than 20–25% of flights in Africa 

and Latin America are operated on fuel-optimal routes, compared to over 

40% in Europe and North America. 

This divergence stems from multiple causes. First, real-time data 

sharing requires investments in communication networks, radar coverage, 

ADS-B infrastructure, and secure data links—investments that are limited 

in lower-income regions. Second, there are institutional barriers related to 

sovereignty and airspace management policies. In some cases, airspace is 

controlled by military authorities or multiple overlapping jurisdictions, 

making the integration of civil aviation data into a shared optimization 

network politically and logistically challenging [50]. 

 
Fig.5 Projected SAF Production vs. Demand (2020–2030) 

 

Global disparities are further exacerbated in SAF deployment. Figure 5 

shows the projected mismatch between SAF production and demand 

through 2030. Most of the production capacity is concentrated in the 

United States and Europe, where government incentives (e.g., the U.S. 

Inflation Reduction Act and the EU ReFuelEU initiative) have accelerated 

investment. Meanwhile, the demand from global carriers far outpaces 

supply, particularly in Asia, Africa, and Latin America—regions with 

growing aviation markets but limited local SAF production or blending 

facilities. This mismatch not only limits the ability of airlines in these 

regions to participate in emissions-reduction schemes but also raises 

concerns about “carbon inequity,” where only a few regions accrue 

regulatory and reputational benefits from SAF adoption. 

Figure 7 contextualizes this challenge by tracing the certification timeline of 

different SAF pathways under ASTM D7566. Even though multiple SAF 

types have been approved over the last decade, the downstream 

infrastructure (fuel blending terminals, certification labs, quality assurance 

systems) is largely absent outside of OECD countries. For developing 

nations, the barriers to SAF deployment are not only technical but 

economic. With SAF prices currently 2–4 times higher than Jet-A, airlines in 

cost-sensitive regions face limited commercial incentive to invest without 

subsidies, credits, or long-term procurement guarantees [51]. In the context 

of AI and route optimization tools, the inequity is equally stark. Figure 8 

shows the fuel savings potential of various route planning methods, with AI-

reinforcement learning and hybrid AI models delivering efficiency gains of 

14–16% compared to baseline. However, access to these technologies 

requires robust datasets, computational infrastructure, skilled personnel, 

and certified integration with operational planning software—all of which 

are unevenly distributed. Research by Air Transport Action Group (ATAG) 

notes that only 12% of ICAO member states have operational AI capabilities 

integrated into national aviation systems [52]. 
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Fig.6 Share of Flights with Fuel-Optimal Routing by Region  

 

There are also risks of algorithmic bias in AI-driven routing systems. 

For instance, if models are trained predominantly on North Atlantic or 

European airspace datasets, their performance may be suboptimal in 

tropical or mountainous regions with different meteorological and 

navigational dynamics. Without region-specific training data and 

operational feedback, the recommendations generated by these systems 

may fail to capture local constraints, resulting in suboptimal or even 

unsafe recommendations [53]. A related concern is the lack of 

explainability and certification pathways for such models in regions with 

less regulatory capacity or oversight. 

To address these inequities, a globally coordinated data governance 

framework is needed. ICAO, in partnership with IATA and regional 

organizations, could play a key role in establishing open-access, 

anonymized aviation data repositories, standardized APIs for routing 

data, and model interoperability protocols. Such frameworks would allow 

countries without robust internal infrastructure to access validated 

optimization tools and participate in coordinated emissions-reduction 

schemes. A similar model exists in meteorology, where the World 

Meteorological Organization (WMO) operates the Global 

Telecommunication System (GTS) to ensure weather data equity. 

 
Fig.7 Certification Timeline for SAF Pathways 

 

In terms of SAF, global development finance institutions—such as the 

World Bank and regional development banks—can facilitate capacity-

building programs and offer low-interest loans or green bonds for SAF 

infrastructure deployment in emerging markets. International emissions 

credit trading platforms could also allow airlines in developing countries 

to earn verifiable credits through operational optimization and reinvest 

those credits in SAF procurement. 

Beyond infrastructure, training and human capacity are critical. Pilots, 

dispatchers, and controllers in under-resourced airspaces may not be 

familiar with dynamic trajectory concepts or AI-assisted planning 

systems. ICAO’s Next Generation of Aviation Professionals (NGAP) 

initiative could be expanded to include dedicated modules on route 

optimization and SAF-aware energy planning, with a focus on inclusivity 

and global accessibility [54]. 

 
Fig.8 Average Efficiency Gain from Route Planning Methods 

 

In conclusion, while route optimization technologies and SAF offer 

global energy and emissions benefits, their uneven deployment threatens 

to deepen aviation inequality. Addressing this will require international 

cooperation, funding mechanisms, technical standardization, and a 

commitment to aviation equity. Without this, the environmental benefits of 

route optimization may remain concentrated in wealthier regions, leaving 

others to face rising emissions without adequate tools to mitigate them. 

 

 

5. Conclusion 

 

This review has critically evaluated the current landscape, 

effectiveness, and future prospects of aviation route optimization as a tool 

to enhance energy efficiency and reduce the environmental impact of air 

travel. Drawing from over 50 peer-reviewed studies and global reports, we 

have demonstrated that a combination of trajectory-based routing, 

airspace congestion management, artificial intelligence, and sustainable 

aviation fuels (SAF) can collectively deliver significant energy and 

emissions savings. Under ideal conditions, cumulative improvements in the 

range of 15–25% in fuel efficiency are feasible, representing a vital 

contribution to achieving international climate goals in the aviation sector. 

Trajectory optimization, especially through wind-aware routing and 

vertical profile management, consistently yields fuel savings between 1–

4%. Airspace-level improvements such as traffic flow metering, 

congestion-aware routing, and collaborative decision-making strategies 

further enhance systemic efficiency by 2–5%. The most substantial gains, 

however, emerge from AI-powered planning tools, with supervised and 

reinforcement learning models demonstrating up to 14–16% fuel burn 

reductions in simulations. When combined with the use of SAF—which can 

increase engine efficiency and reduce lifecycle carbon emissions by 50–

80%—route optimization strategies transition from operational 

enhancements to core enablers of aviation decarbonization. 

However, the realization of these gains is not without significant 

barriers. Technological constraints include the lack of real-time data 

integration across stakeholders, limitations in avionics system 

interoperability, and the absence of standardized protocols for AI 

explainability and certification. Operational barriers persist in the form of 

pilot trust, ATC workload, and inertia in regulatory change. SAF 

deployment is also hindered by limited supply, high cost, and uneven 

certification availability, especially in regions lacking supporting 

infrastructure. 

Equity and global access further complicate deployment. While 

advanced optimization tools are being rolled out in Europe and North 

America, many regions in the Global South lack the data, digital 

infrastructure, and financial mechanisms to implement even basic dynamic 

routing systems. The current distribution of SAF production also favors 

developed nations, risking disproportionate environmental benefits and 

creating a two-tiered aviation system. These disparities must be addressed 

through coordinated international governance, funding mechanisms, and 

data-sharing agreements. 

Looking forward, the aviation industry must adopt a multi-dimensional 

strategy that unites operational excellence with environmental 

responsibility. This includes: 

• Expanding regulatory pathways for the certification of AI-
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powered planning and decision tools; 

• Scaling global SAF production and harmonizing fuel standards; 

• Investing in digital infrastructure for real-time trajectory 

management across regions; 

• Promoting open-access data frameworks and cooperative 

optimization algorithms; 

• Ensuring that capacity-building efforts are inclusive and 

geographically balanced. 

Aviation route optimization is no longer an isolated technical upgrade 

but a critical pillar of sustainable flight operations. With increasing 

pressure from regulators, the public, and investors to decarbonize 

aviation, route optimization offers a cost-effective, infrastructure-light, 

and immediately actionable solution. If coupled with scalable SAF 

adoption and global equity frameworks, it can deliver real progress 

toward ICAO’s aspirational goals of carbon-neutral growth and net-zero 

emissions by 2050. 

By bridging the gap between research and operational deployment, 

and by ensuring inclusive access to tools and fuels, the aviation industry 

can move toward a smarter, cleaner, and more equitable future in global 

air transportation 
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