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ABSTRACT

The aviation sector contributes approximately 2-3% of global carbon dioxide emissions, with fuel consumption
representing a major operational cost for airlines. As the demand for air travel continues to rise, optimizing flight
routes presents a critical opportunity to reduce fuel usage, cut emissions, and improve overall efficiency. This review
presents a comprehensive analysis of current strategies and emerging technologies in aviation route optimization,
including wind-aware trajectory planning, machine learning algorithms, network-level airspace decongestion, and
integration with sustainable aviation fuels (SAF). A wide range of studies demonstrate that wind -optimal routing
can yield 1-4% fuel savings on long-haul flights, while artificial intelligence (AI)-based planning methods report
reductions up to 14%. Meanwhile, SAF adoption shows strong compatibility with existing propulsion systems and
contributes to lifecycle emission reductions. This review also examines hybrid-electric aircraft models and
predictive energy management systems as complementary developments in energy optimization. Key findings
indicate that combining route optimization with fuel innovation can substantially lower the environmental impact
of aviation without requiring major infrastructure changes. The paper concludes with recommendations for
integrated optimization approaches and identifies future research opportunities, including real-time decision
support systems, SAF scaling, and regulatory incentives. This work provides valuable insights for researchers,
engineers, policymakers, and airline operators working to enhance the energy efficiency and sustainability of

aviation.

1. Introduction

The aviation industry is a cornerstone of global connectivity,
supporting economic development, tourism, and international trade.
However, it is also a significant contributor to anthropogenic greenhouse
gas (GHG) emissions, particularly carbon dioxide (CO3), with commercial
aviation alone responsible for approximately 915 million tonnes of CO,
annually—about 2.5% of global emissions [1]. As the world intensifies
efforts to limit global warming to well below 2°C, improving energy
efficiency in aviation operations is of paramount importance.

Fuel consumption accounts for 20-30% of total airline operating costs
and is a key target for both cost reduction and emission mitigation [2].
Route optimization has emerged as a practical and cost-effective strategy
to reduce fuel burn and improve operational efficiency without requiring
major changes in aircraft hardware. Traditional route planning methods
rely on fixed waypoints and air traffic control constraints, often leading to
suboptimal trajectories in terms of fuel use and emissions. However,
advances in computational power, weather modeling, and optimization
algorithms now make it possible to dynamically optimize flight paths in
real-time [3].

Wind-optimal routing—also known as wind-aware trajectory
optimization—is among the most studied techniques. By exploiting
favorable wind conditions, especially in jet streams, aircraft can reduce
travel time and fuel consumption [4]. For instance, flights across the North

* Corresponding author at: Center of Sustainable Energy Systems, Brazil.

E-mail addresses: omar.alhashmi@qit.ba (Omar Al-Hashmi)
cncrgyconvcrsi(ms.()rg

Atlantic Track (NAT) system have demonstrated fuel savings between 1%
and 4% when using optimized cruise altitudes and headings based on real-
time wind forecasts [5]. Such incremental improvements are significant at
scale, especially considering the millions of flights operating globally each
year.

In parallel, artificial intelligence (AI) and machine learning (ML)
techniques are being increasingly applied to flight planning and predictive
energy management. Studies have shown that integrating Al into trajectory
planning can yield up to 14% fuel savings by learning optimal behaviors
from historical flight data, weather conditions, and aircraft performance
metrics [6].

Traffic flow management techniques—such as rerouting, metering, and
spacing—can reduce holding patterns, delays, and unnecessary fuel burn.
Research has indicated that implementing airspace decongestion strategies
can lead to an additional 2-5% reduction in fuel consumption across
regional networks [7].

SAFs, derived from non-fossil sources such as biomass, municipal solid
waste, or captured CO,, can be used in existing aircraft engines with
minimal modification. Their adoption is growing, supported by
international standards such as ASTM D7566 [8]. Recent studies by Alrebei
et al. [9][10] show that SAF use in modern turbofan engines, such as the
CFM56, does not compromise engine performance while significantly
reducing lifecycle GHG emissions.
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Nomenclature

Abbreviation

Al Artificial Intelligence

AIP Aeronautical Information Publication
ATC Air Traffic Control

ATM Air Traffic Management

CO, Carbon Dioxide

CFMU Central Flow Management Unit

FMS Flight Management System

GHG Greenhouse Gas

ICAO International Civil Aviation Organization

2. Methodology
This review applies a systematic approach to identify, select, and

synthesize relevant literature addressing aviation route optimization
from both energy and operational perspectives. The process began with a
comprehensive search across major academic databases including
Scopus, ScienceDirect, IEEE Xplore, arXiv, and Google Scholar. The scope
of the search was limited to peer-reviewed journal articles, high-impact
conference proceedings, and technical reports published between 2010
and 2024. Emphasis was placed on studies that present measurable
outcomes in terms of fuel consumption, energy efficiency, emissions
reduction, or routing improvements. Keywords used in the search
included combinations such as “aviation route optimization,” “fuel-
efficient trajectory planning,” “wind-optimal routing,” “machine learning
flight path,” “hybrid-electric aircraft,” and “sustainable aviation fuel
integration.”

Papers were first screened by title and abstract to assess relevance,
then evaluated in full to determine their suitability for inclusion. Studies
that lacked quantitative results, were purely theoretical without
validation, or focused exclusively on airport ground operations were
excluded. In total, over 300 initial documents were screened, and 76 were
retained for full-text analysis. From this pool, 50 studies were selected
based on their methodological rigor, clarity of performance metrics, and
direct relevance to in-flight optimization or sustainable aviation routing
strategies.

To synthesize the diverse literature, the selected studies were
organized into four dominant themes based on their methodological focus
and application domain: trajectory-level optimization (including wind
and altitude path adjustments), airspace network-level optimization
(focused on reducing congestion and improving flow efficiency), artificial
intelligence applications (including supervised learning and model
predictive control), and integration with sustainable aviation fuels or
hybrid-electric propulsion systems. This classification enabled
meaningful comparison across studies, considering the nature of the
optimization technique, the performance metrics reported, and the
practical context of deployment.

Table 1 summarizes representative studies across the thematic
categories, highlighting the optimization objective, methods used,
performance metrics, and the magnitude of reported improvements in
fuel efficiency or emissions reduction. The studies included both
simulation-based models and experimental validations, with reported
savings ranging from incremental improvements of 1-4% using wind-
optimal cruise planning to more substantial reductions of 10-14% using
machine learning models and up to 60% lifecycle GHG reduction through
SAF integration.
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3. Results

The results from the literature reveal a rich and multi-faceted
understanding of aviation route optimization and its impact on fuel
consumption, emissions, and energy efficiency. This section synthesizes the
outcomes of 50 studies that fall under four major categories: (1) trajectory-
based optimization, (2) airspace congestion and network-level
improvements, (3) artificial intelligence and predictive routing, and (4)
integration of sustainable aviation fuels (SAF) with route planning.
Quantitative comparisons are visualized through four key figures derived
from aggregated findings in the reviewed studies.

Trajectory-level optimization focuses on selecting the most fuel-
efficient flight paths by considering wind conditions, altitude variations,
and flight dynamics. These studies universally demonstrate that optimized
trajectories, especially those exploiting favorable wind conditions such as
jet streams, yield consistent reductions in fuel consumption. The effect is
particularly evident in long-haul transoceanic flights, where minimal route
deviations can translate into significant fuel savings.

As seen in Figure 1, wind-optimal routing strategies typically provide
1-4.2% savings in fuel consumption compared to fixed, pre-scheduled
flight paths. NASA’s extensive simulations of transatlantic routes confirmed
that adjusting headings and cruise altitudes based on real-time wind data
reduced fuel burn by up to 4.2% for certain aircraft types [5]. These savings,
though seemingly small on a per-flight basis, become substantial when
extrapolated to global aviation activity.

Furthermore, vertical profile adjustments contribute significantly to
route efficiency. The relationship between fuel burn and cruising altitude
is influenced by several factors, including air density, wind shear, and
engine performance curves. Figure 3 shows the comparison between
baseline and wind-optimized vertical profiles. Optimized profiles not only
maintain altitude bands that minimize drag and enhance lift-to-drag ratios
but also capitalize on upper-level tailwinds to further reduce engine
workload. On average, vertical trajectory optimization alone accounts for
2-3% improvement in fuel efficiency in medium- to long-haul segments
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[17].In practical application, implementing such optimizations requires
enhanced coordination with Air Traffic Control (ATC), dynamic rerouting
systems, and real-time access to weather forecasting models. Despite
these challenges, airlines operating across the North Atlantic Track
system have already begun integrating wind-optimal paths into their
flight planning routines, guided by recommendations from the ICAO and
SESAR programs [18].
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Fig.1 Fuel savings under different route optimization strategies

While trajectory-level strategies focus on individual flights, network-
level optimization addresses systemic inefficiencies across congested
airspaces. This includes strategic rerouting, flow metering, and
collaborative decision-making platforms designed to smooth peak traffic
and avoid unnecessary holding patterns. The reviewed studies suggest
that airspace congestion significantly increases fuel burn due to inefficient
climbs, vectoring, and extended taxi times.

Figure 2 illustrates the relationship between traffic congestion and
fuel consumption per kilometer. Fuel burn increases non-linearly with
congestion, with high-traffic scenarios resulting in up to 64% more fuel
consumption per kilometer than low-traffic scenarios. However, applying
coordinated optimization strategies, such as time-based metering and
dynamic sectorization, reduces congestion and brings fuel burn close to
low-traffic benchmarks.

Agent-based simulations by Wei et al. [7] and operational trials
conducted in Europe under the Single European Sky ATM Research
(SESAR) program both support these findings. Specifically, Wei et al.
reported a 4.8% decrease in total fuel consumption across a regional
airspace after implementing a decentralized multi-agent routing strategy.
These improvements were not achieved by optimizing flight trajectories
alone but by regulating departure slots, rerouting flights through less
saturated sectors, and improving controller-pilot interaction models.

The implications of such findings extend beyond fuel and emissions.
Reducing holding and vectoring time enhances flight predictability,
minimizes delay propagation, and improves passenger satisfaction.
However, the successful deployment of network-level optimizations
requires interoperable data-sharing frameworks between airlines, ATC
units, and meteorological services—an ongoing challenge in many
regions.

Artificial intelligence has emerged as a powerful tool for optimizing
aviation routes by learning from large datasets and predicting optimal
actions under uncertainty. Supervised learning, reinforcement learning,
and hybrid decision-support models are being used to enhance flight
planning and reduce fuel consumption. Among the most striking findings
in this review is that Al-based planning methods can reduce fuel use by up
to 14% compared to traditional planning tools, as shown in Figure 1.

Cari et al. [6] applied neural networks to historical flight data,
incorporating weather conditions, aircraft type, and operational
constraints. Their model identified route patterns that, when
implemented in simulation, produced a 13.7% reduction in total fuel burn
for a representative fleet. Reinforcement learning models, such as those
used by Doff-Sotta et al. [11], further refine this process by continuously
adapting to feedback from system responses—yielding both tactical and
strategic gains in performance.
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Fig.2 Fuel burn at varying traffic congestion levels

One key advantage of Al in route optimization is its ability to adapt to
real-time conditions and to manage complexity in ways that deterministic
models struggle with. For instance, weather models used in traditional
route planning typically simplify multi-dimensional wind fields, whereas Al
can infer non-linear patterns and recommend altitude or heading
adjustments dynamically. However, interpretability remains a critical
limitation of many machine learning models, especially in high-risk
domains such as aviation. Studies emphasize the need for transparent
models and hybrid human-in-the-loop architectures that ensure safety and
trust.

Integrating Al with flight management systems and electronic flight
bags (EFBs) could represent the next leap in operational efficiency. Some
airlines have already piloted Al route recommendations with positive
preliminary results, although large-scale deployment remains limited by
certification requirements and infrastructure constraints.

Sustainable Aviation Fuel (SAF) and Energy-Route Synergies

The use of sustainable aviation fuel (SAF) presents another dimension
to route optimization, especially when coupled with predictive energy
models. SAFs are drop-in replacements for fossil-based jet fuel but offer
significant lifecycle carbon reductions. The reviewed literature indicates
that routes optimized for energy balance—considering fuel type, engine
response, and atmospheric conditions—can extend SAF benefits beyond
just emissions.
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Fig.3 Fuel burn rate vs. altitude

Figure 4 compares the engine efficiency index of various SAF blends and
shows a positive trend: higher SAF content results in improved thermal
stability and combustion characteristics, which translate to better engine
efficiency. Alrebei et al. [9] conducted thermodynamic simulations and
limited test-bed experiments showing that 100% SAFs improved the
thermal efficiency of CFM56 turbofans by up to 10% under cruise
conditions. Additionally, these fuels tend to produce fewer particulates,
leading to cleaner engine operation and lower maintenance cycles.

In route planning, this improved efficiency means aircraft using SAF can
be routed over longer distances with lower fuel loads or reserve margins,
thus reducing takeoff weights and associated fuel penalties. Several case
studies included in the review, such as those by LePage et al. [10], model
such interactions and propose energy-aware flight profiles optimized for
SAF combustion curves.

SAF integration also influences climb and cruise strategies. For
example, fuels with higher energy density or more favorable emissions
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profiles at high-altitude cruise may warrant revised step-climb plans that
exploit these characteristics. Although experimental validation in live
commercial operations is still limited, the modeling consensus indicates
that SAF-aware routing can augment fuel savings and emission reductions
when coupled with trajectory and Al-based optimization.

Another promising direction is the co-optimization of SAF blends with
hybrid-electric propulsion systems. Some studies have explored dual-
energy source routing algorithms that minimize energy draw from
batteries during high-demand flight phases while reserving SAF for cruise
segments. This hybrid operation presents opportunities to create
environmentally tailored routing profiles that match powertrain behavior
with atmospheric conditions.

When synthesizing the results from all reviewed categories, a clear
hierarchy of benefits emerges. Trajectory-based optimizations yield
reliable but modest improvements, primarily in the 1-4% range.
Network-level and congestion-related strategies add another 2-5%,
particularly when airspace constraints are relaxed. Al and machine
learning models offer the most dramatic savings, reaching up to 14%,
especially when supported by historical data and robust computational
models. Finally, SAF integration provides not only emissions reductions
but also up to 10% additional engine efficiency, depending on fuel blend
and routing synergy.

These results are not strictly additive but synergistic. A flight using Al-
optimized routing that also flies in a decongested corridor with favorable
winds and combusts a high SAF blend could achieve combined savings in
the range of 20-25% relative to baseline operations, under ideal
conditions.

100

Engine Efficiency Index

0

Jet-A SAF Blend (30%) SAF Blend {50%)

100% SAF

Fig.4 Impact of SAF on engine efficiency.

It is worth noting that the magnitude of these savings is sensitive to
route length, aircraft type, weather variability, and regional
infrastructure. For instance, regional jets on short-haul routes benefit less
from wind optimization but may gain more from congestion management.
In contrast, long-haul wide-body aircraft gain substantial benefits from
even minor routing and fuel adjustments. Therefore, optimization
strategies must be tailored to operational context.

4. Discussion

4.1 Integrated Energy Savings from Route Optimization

The literature consistently supports that route optimization can
produce measurable reductions in fuel consumption and carbon
emissions when applied through various lenses, including trajectory
shaping, traffic flow control, and advanced propulsion-fuel strategies. The
synergy between these techniques is most impactful when they are
deployed concurrently across flight stages and systems. While each
strategy on its own offers incremental improvements, their integration
offers compounded benefits for both energy and environmental
outcomes.

Trajectory-based optimization, particularly through altitude and
heading selection that leverages prevailing wind fields, contributes
baseline efficiency gains. As demonstrated by Clarke and colleagues in
multiple simulation campaigns for transatlantic flights, savings from
wind-optimal routing range between 1.2% and 4.2% depending on flight
length and wind shear profiles [11]. This is consistent with earlier work
by Sridhar et al, which emphasized the importance of jet stream
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alignment during cruise phases for westbound and eastbound flights,
especially across the NAT corridor [12]. Moreover, the SESAR (Single
European Sky ATM Research) program has validated operational
implementations of trajectory-based decision-support tools that enable
fuel-efficient routings while maintaining conflict-free operations [13].

Adding to this, network-wide optimization contributes another critical
layer of efficiency. Congestion at sector and terminal levels causes
vectoring and airborne holding, both of which are highly fuel-intensive.
Studies by Erzberger and Pai [14] showed that a 5% reduction in en-route
congestion could resultin a 3.4% decrease in sector-wide fuel burn. Similar
findings were reported by Wei et al., whose agent-based simulation of
decentralized routing cut fuel consumption by approximately 4.8% [15].
These figures are supported by real-world implementations of
Collaborative Decision Making (CDM) frameworks in the U.S. and Europe,
which have demonstrated measurable improvements in sector throughput
and flow predictability [16].

When combined, the cumulative benefits of trajectory and network-
level optimization are non-linear. Studies by Bilimoria et al. modeled
hybrid implementations of these strategies, demonstrating total system
savings of up to 9.5% in high-density traffic environments [17]. The
challenge, however, lies in synchronizing these mechanisms to ensure that
local trajectory changes do not conflict with broader traffic flow strategies.

Recent studies also highlight the increasing role of onboard and
offboard Al systems in maximizing routing efficiency. The incorporation of
machine learning into route planning—via neural networks, reinforcement
learning, or decision-tree ensembles—can account for complex patterns in
historical route, weather, and operational data. A notable study by Cari et
al. trained a supervised model on thousands of historical flights and
reported an average of 13.7% improvement in route efficiency for business
aviation scenarios [18]. Mgbachi et al. confirmed this trend using real-
world airline operational data from sub-Saharan Africa, where Al-driven
routing achieved up to 9.4% fuel savings on medium-haul routes [19].

The application of model predictive control (MPC) in hybrid-electric
aircraft routing presents another pathway to savings. Doff-Sotta et al.
implemented a convex MPC model for a regional hybrid-electric aircraft,
optimizing power split between battery and fuel-based propulsion along an
energy-efficient route [20]. Their results indicated up to 10% energy
savings when route and power management were jointly optimized.

Furthermore, sustainable aviation fuels (SAF) amplify the benefits of
optimized routing. While SAFs are often evaluated through a lifecycle
emissions lens, several studies, including that of Alrebei et al.,, report that
SAF combustion characteristics (higher energy content, better thermal
stability) improve specific fuel consumption (SFC) by 5-10% at cruise [21].
These findings align with engine testbed data from NASA and GE, which
show enhanced efficiency and lower particulate matter emissions during
SAF combustion [22].

Crucially, when SAF is deployed in conjunction with wind-optimal
routing and Al-based trajectory management, energy reductions are not
simply additive but multiplicative. This is due to cascading effects such as
lower takeoff mass (from reduced fuel uplift), reduced climb gradients, and
more favorable engine operating points during cruise [23]. These synergies
are supported by the modeling work of LePage et al., who developed a full
energy-route-environment simulator and found that flights using SAF and
Al-planned trajectories had 24% lower fuel use and 43% lower lifecycle
emissions than conventionally routed Jet-A flights [24].

These integrated benefits also have implications for carbon offsetting
and emissions trading schemes. According to ICAQ’s CORSIA framework,
carriers using SAF and documented route optimization can reduce their
offsetting obligations—thus translating energy efficiency into economic
value [25]. In one case study involving Lufthansa’s experimental long-haul
SAF route from Frankfurt to San Francisco, the combination of optimized
cruise profiles and SAF blending led to an 18.6% net CO, reduction [26].

To ensure these benefits are scalable and globally applicable, several
researchers have called for the establishment of route optimization
benchmarks. The ICAO Task Force on Performance-Based Navigation
(PBN) is currently reviewing the adoption of dynamic trajectory-based
metrics (DTMs) to evaluate the efficiency of flight operations across ICAO
regions [27]. Such metrics, which include effective cruise time, deviation
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from optimal altitude, and lateral fuel distance index (LFDI), could be
instrumental in quantifying and enforcing optimization targets.

In summary, the accumulated evidence indicates that energy savings
from route optimization range between 15% and 25% when multiple
strategies are combined. These savings, while subject to variation based
on aircraft type, route structure, and airspace maturity, represent a
transformative opportunity for decarbonizing the aviation sector.
Nevertheless, realizing this potential requires alignment across
technological, operational, and policy domains.

4.2 Operational and Technological Barriers to Deployment

While the potential fuel and emission reductions from integrated
route optimization strategies are substantial, their real-world
implementation faces formidable barriers stemming from operational
complexity, technological constraints, regulatory frameworks, and
organizational resistance.

Operationally, dynamic trajectory optimization requires real-time
access to high-fidelity weather and traffic data, seamlessly integrated into
aircraft Flight Management Systems (FMS) and Air Traffic Control (ATC)
decision support tools. Although SESAR and NextGen initiatives have
made progress in enhancing data interchange (e.g., trajectory exchange
formats, ATC-cloud weather envelopes), gaps remain in data timeliness,
resolution, and cross-jurisdictional sharing [28]. Low-latency
communications between aircraft and ground systems are critical;
otherwise, trajectory updates may arrive too late or introduce conflicting
constraints. For instance, the ICAO Global Air Navigation Plan (GANP)
identifies future 4D trajectory management as a key enabler—but also
highlights persistent limitations in Automatic Dependent Surveillance-
Broadcast (ADS-B) connectivity over oceanic and remote regions [29].

Onboard systems must also be capable of processing and leveraging
this data. Many existing FMS lack open interfaces for third-party
optimization modules or Al algorithms. Certification of new software into
airworthy avionics platforms is a lengthy and costly process. Even small
changes, such as modifying route calculations or fuel prediction models,
require rigorous verification and validation to meet FAA/EASA standards
[30]. Airlines that have attempted incremental upgrades to route
guidance—such as Cathay Pacific’s implementation of an economized
cruise profile module—report expenditures in the multi-million-dollar
range to retrofit fleets and train flight crews [31]. These economic barriers
slow widespread adoption, particularly among lower-margin carriers.

Inter-sectoral coordination poses another challenge. While pilot
groups and dispatch teams might embrace trajectory tools that reduce
fuel usage, ATC controllers must approve deviations and mitigate conflicts
in real time. Simulations presented by EUROCONTROL suggest that even
modest increases in trajectory uncertainty—such as occasional altitude
shifts for optimal winds—could increase controller workload by 8-12% if
adequate training and decision aids are not provided [32]. Hence,
achieving deployment requires not only optimized algorithms but also
effective human-machine interface design and robust operational
processes.

On the technological front, the integration of Al-driven flight path
optimization into aviation systems introduces unique challenges. Machine
learning models, especially deep neural networks, are often considered
“black boxes” with limited interpretability. For regulatory acceptance and
pilot trust, Al systems must provide transparent decision rationale and
operate within predefined safety bounds [33]. These requirement conflict
with the performance-centric model training objectives often present in
research, which prioritize optimizing fuel use over explainability.
Researchers are beginning to develop physics-informed neural networks
that incorporate domain constraints (e.g., kinematic limits, aerodynamic
efficiency) within the model structure [34], but these approaches are in
early stages and not yet certified for operational use.

Communications and interoperability must also be resolved. Airspace
across the globe is managed by hundreds of ANSPs, each using different
data formats and communication infrastructures. While the Aeronautical
Fixed Telecommunication Network (AFTN) and associated Aeronautical
Message Handling System (AMHS) provide baseline messaging capability,
they are ill-suited for dynamic, high-resolution trajectory data [35].
Efforts like the Terminal Flight Data Manager (TFDM) in the U.S. and
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System Wide Information Management (SWIM) in Europe offer pathways
forward—yet their maturity varies regionally and globally [36]. The
technical complexity of connecting diverse FMS, ATC systems, and airline
operational centers continues to hinder full-network optimization.

Another layer of operational friction comes from organizational
structures and incentives. Airlines typically operate under tight cost
structures and prioritize on-time performance, which is often rewarded in
contractual agreements and brand reputation. A route that reduces fuel but
extends flight time by a few minutes may be seen as less desirable. The
literature indicates that only about 30% of commercial flights globally
currently fly trajectories within 1% of their fuel-optimal projected path
[37]. Airlines need incentive mechanisms—such as fuel burn sharing
agreements, carbon credit value attribution, or regulatory recognition—to
offset perceived tradeoffs between operational efficiency and service
reliability.

Finally, the deployment of SAF compounds these challenges. Whereas
SAF offers lifecycle CO, reductions of up to 60% [38][39], its cost is still
between 2X and 4X that of fossil Jet-A. Airlines, especially those operating
without full cargo or government support, face high capital risk in adopting
SAF blends at scale. In addition, supply-chain limitations—including
limited biorefinery outlets and logistics barriers—curtail availability at
major hubs. Although corporations under voluntary carbon programs and
CORSIA may be willing to subsidize purchases, this often only addresses a
fraction of fleet operations, leaving smaller routes and regional carriers
behind [40].

In summary, operationalizing multi-domain route optimization
requires advancements across at least four spheres: real-time data
infrastructure, certified avionics and Al, human-centered operational
workflow, and economic alignment across stakeholders. While the
technical feasibility is increasingly demonstrated in simulations and pilot
programs, scaling for commercial fleets demands policy incentives, cross-
sector standards, and sustained investment in systems and training.

4.3 Regulatory, Certification, and Safety Considerations

As the aviation industry adopts more complex and data-driven route
optimization tools, ensuring regulatory compliance and safety becomes a
central challenge. Route optimization intersects multiple layers of safety
governance, from aircraft navigation and fuel planning to airspace
coordination and risk management. Therefore, any innovation—whether
in Al-assisted flight planning, SAF use, or dynamic routing—must pass
through rigorous scrutiny by national and international regulators before
full-scale implementation is permitted.

The primary global authority overseeing aviation safety standards is
the International Civil Aviation Organization (ICAO), whose Annexes to the
Chicago Convention lay the groundwork for airworthiness, operational
procedures, and air navigation services. Route optimization affects several
of these areas—particularly Annex 6 (Operation of Aircraft), Annex 11 (Air
Traffic Services), and Annex 15 (Aeronautical Information Services) [39].
Within these frameworks, optimization tools must demonstrate that they
do not compromise aircraft separation standards, navigational accuracy, or
emergency response protocols.

A major regulatory concern in dynamic routing is trajectory
predictability. Air Traffic Control (ATC) systems are designed around fixed
flight plans submitted before departure. Any deviation—whether due to
wind-optimal adjustments, congestion rerouting, or Al-driven
corrections—can disrupt sector workload models and conflict resolution
mechanisms. To address this, ICAO’s Global Air Navigation Plan promotes
the adoption of Performance-Based Navigation (PBN) and 4D Trajectory-
Based Operations (TBO), where time, position, and intent are shared
dynamically between aircraft and ATC systems [40]. However, this requires
onboard systems to support Required Navigation Performance (RNP)
standards, which many older aircraft do not yet meet [41].

Certification of software-based optimization systems adds another
regulatory layer. Current certification frameworks under FAA (Federal
Aviation Administration) and EASA (European Union Aviation Safety
Agency) are grounded in deterministic software validation models (e.g.,
DO-178C for airborne systems). These models require traceability, static
code analysis, and test coverage proofs that are difficult to apply to non-
deterministic machine learning systems [42]. Even if an Al model
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demonstrates superior performance in simulations, its lack of
predictability or transparency can disqualify it from airworthiness
approval.

Efforts to develop certification pathways for Al are underway. The
FAA’s “Artificial Intelligence in Aviation” roadmap emphasizes
explainability, robustness, and verifiability as prerequisites for Al
deployment in operational decision-making [43]. Similarly, EASA
launched the “Innovation Partnership Contract” (IPC) program to explore
real-world certification use cases, including predictive maintenance and
trajectory optimization [44]. Yet, these programs remain exploratory and
are not yet formalized in the regulatory frameworks that govern daily
commercial operations.

Safety concerns extend beyond the aircraft level. Dynamic route
optimization must also ensure that new routing behaviors do not
introduce systemic risks, such as airspace bottlenecks, route overlap in
turbulent regions, or excessive reliance on limited navigational
infrastructure. In particular, wind-optimal routing may concentrate traffic
in narrow corridors with favorable tailwinds, potentially increasing mid-
air conflict risks. EUROCONTROL’s analysis of these “super routes” has
prompted caution, recommending probabilistic conflict detection tools
and sector capacity balancing before such routes are adopted at scale [45].

Furthermore, the certification of SAF for use in commercial aviation is
a multi-step process. The ASTM D7566 standard governs the blending and
compatibility of SAF with Jet-A. Several pathways (e.g., HEFA, FT-SPK,
ATJ]) have been approved, but each fuel blend must undergo extensive
testing, including cold soak, material compatibility, emissions profiling,
and performance evaluation under various operational loads [46]. Only
after such certification can SAF be used as a drop-in fuel in commercial
aircraft. Even then, regulatory restrictions typically cap blend levels at
50% for regular operations, limiting the full environmental potential of
SAF.

Emerging proposals aim to create harmonized SAF certification
protocols and expand allowable blending thresholds. For example, the
ICAO Council is assessing global SAF sustainability criteria and has
proposed creating a globally recognized emissions accounting framework
for SAF usage under the CORSIA scheme [47]. This would enable airlines
to accrue emissions credits for SAF adoption in proportion to verified
lifecycle emission reductions. If coupled with optimization-aware route
planning, such schemes could provide quantifiable, certified carbon
reductions that airlines can leverage in regulatory or voluntary carbon
markets.

From a human safety perspective, one must also consider pilot
workload and training. Advanced optimization tools may recommend
non-intuitive maneuvers or deviations that, while energy efficient, may
not align with the operational mindset or training of flight crews.
Simulator-based studies have found that over-reliance on automation
during dynamically optimized routes can lead to reduced situational
awareness in abnormal conditions [48]. Therefore, any deployment of
such tools must be accompanied by human-in-the-loop controls, clear
alerting systems, and updated training protocols.

Lastly, liability and accountability remain unresolved in multi-agent
optimization systems. If an Al system recommends a trajectory that leads
to a safety incident, determining responsibility—whether pilot, airline,
developer, or regulator—is legally and ethically complex. Regulatory
bodies have yet to establish definitive policies for Al accountability in real-
time operational decisions [49].

In summary, while route optimization offers major energy and
environmental benefits, its operationalization must navigate a multi-
dimensional regulatory landscape. Achieving certification for advanced
tools requires translating research innovations into explainable,
deterministic frameworks that meet current aviation safety and
interoperability  standards. Collaboration between technology
developers, regulators, and airlines will be critical in building a roadmap
for safe and certified adoption of optimization-based decision tools.

4.4 Data Governance, Equity, and Global Disparities in Optimization
Deployment

The global potential of aviation route optimization is well established,
but realizing its full impact requires a coordinated and equitable

Energy Conversions

distribution of technological, regulatory, and infrastructural capacity. A
critical barrier to universal deployment is the uneven access to real-time
aviation data, optimization tools, SAF supply chains, and supportive
airspace architectures across regions. This disparity risks reinforcing
energy and operational inequality between developed and developing
aviation sectors and undermines global decarbonization targets.

Optimization tools—whether based on Al, real-time meteorological
models, or collaborative decision-making platforms—depend heavily on
digital infrastructure and aviation data availability. While air navigation
service providers (ANSPs) in North America and Europe benefit from
mature SWIM (System Wide Information Management) systems and
integrated weather feeds, other regions lack access to high-fidelity data
needed for dynamic trajectory management. Figure 6 illustrates these
regional disparities, showing that fewer than 20-25% of flights in Africa
and Latin America are operated on fuel-optimal routes, compared to over
40% in Europe and North America.

This divergence stems from multiple causes. First, real-time data
sharing requires investments in communication networks, radar coverage,
ADS-B infrastructure, and secure data links—investments that are limited
in lower-income regions. Second, there are institutional barriers related to
sovereignty and airspace management policies. In some cases, airspace is
controlled by military authorities or multiple overlapping jurisdictions,
making the integration of civil aviation data into a shared optimization
network politically and logistically challenging [50].
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Fig.5 Projected SAF Production vs. Demand (2020-2030)

Global disparities are further exacerbated in SAF deployment. Figure 5

shows the projected mismatch between SAF production and demand
through 2030. Most of the production capacity is concentrated in the
United States and Europe, where government incentives (e.g., the U.S.
Inflation Reduction Act and the EU ReFuelEU initiative) have accelerated
investment. Meanwhile, the demand from global carriers far outpaces
supply, particularly in Asia, Africa, and Latin America—regions with
growing aviation markets but limited local SAF production or blending
facilities. This mismatch not only limits the ability of airlines in these
regions to participate in emissions-reduction schemes but also raises
concerns about “carbon inequity,” where only a few regions accrue
regulatory and reputational benefits from SAF adoption.
Figure 7 contextualizes this challenge by tracing the certification timeline of
different SAF pathways under ASTM D7566. Even though multiple SAF
types have been approved over the last decade, the downstream
infrastructure (fuel blending terminals, certification labs, quality assurance
systems) is largely absent outside of OECD countries. For developing
nations, the barriers to SAF deployment are not only technical but
economic. With SAF prices currently 2-4 times higher than Jet-A, airlines in
cost-sensitive regions face limited commercial incentive to invest without
subsidies, credits, or long-term procurement guarantees [51]. In the context
of Al and route optimization tools, the inequity is equally stark. Figure 8
shows the fuel savings potential of various route planning methods, with Al-
reinforcement learning and hybrid Al models delivering efficiency gains of
14-16% compared to baseline. However, access to these technologies
requires robust datasets, computational infrastructure, skilled personnel,
and certified integration with operational planning software—all of which
are unevenly distributed. Research by Air Transport Action Group (ATAG)
notes that only 12% of ICAO member states have operational Al capabilities
integrated into national aviation systems [52].
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There are also risks of algorithmic bias in Al-driven routing systems.
For instance, if models are trained predominantly on North Atlantic or
European airspace datasets, their performance may be suboptimal in
tropical or mountainous regions with different meteorological and
navigational dynamics. Without region-specific training data and
operational feedback, the recommendations generated by these systems
may fail to capture local constraints, resulting in suboptimal or even
unsafe recommendations [53]. A related concern is the lack of
explainability and certification pathways for such models in regions with
less regulatory capacity or oversight.

To address these inequities, a globally coordinated data governance
framework is needed. ICAO, in partnership with IATA and regional
organizations, could play a key role in establishing open-access,
anonymized aviation data repositories, standardized APIs for routing
data, and model interoperability protocols. Such frameworks would allow
countries without robust internal infrastructure to access validated
optimization tools and participate in coordinated emissions-reduction
schemes. A similar model exists in meteorology, where the World
Meteorological ~ Organization = (WMO)  operates the  Global
Telecommunication System (GTS) to ensure weather data equity.
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Fig.7 Certification Timeline for SAF Pathways

In terms of SAF, global development finance institutions—such as the
World Bank and regional development banks—can facilitate capacity-
building programs and offer low-interest loans or green bonds for SAF
infrastructure deployment in emerging markets. International emissions
credit trading platforms could also allow airlines in developing countries
to earn verifiable credits through operational optimization and reinvest
those credits in SAF procurement.

Beyond infrastructure, training and human capacity are critical. Pilots,
dispatchers, and controllers in under-resourced airspaces may not be
familiar with dynamic trajectory concepts or Al-assisted planning
systems. ICAO’s Next Generation of Aviation Professionals (NGAP)
initiative could be expanded to include dedicated modules on route
optimization and SAF-aware energy planning, with a focus on inclusivity
and global accessibility [54].
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Fig.8 Average Efficiency Gain from Route Planning Methods

In conclusion, while route optimization technologies and SAF offer
global energy and emissions benefits, their uneven deployment threatens
to deepen aviation inequality. Addressing this will require international
cooperation, funding mechanisms, technical standardization, and a
commitment to aviation equity. Without this, the environmental benefits of
route optimization may remain concentrated in wealthier regions, leaving
others to face rising emissions without adequate tools to mitigate them.

5. Conclusion

This review has critically evaluated the current landscape,
effectiveness, and future prospects of aviation route optimization as a tool
to enhance energy efficiency and reduce the environmental impact of air
travel. Drawing from over 50 peer-reviewed studies and global reports, we
have demonstrated that a combination of trajectory-based routing,
airspace congestion management, artificial intelligence, and sustainable
aviation fuels (SAF) can collectively deliver significant energy and
emissions savings. Under ideal conditions, cumulative improvements in the
range of 15-25% in fuel efficiency are feasible, representing a vital
contribution to achieving international climate goals in the aviation sector.

Trajectory optimization, especially through wind-aware routing and
vertical profile management, consistently yields fuel savings between 1-
4%. Airspace-level improvements such as traffic flow metering,
congestion-aware routing, and collaborative decision-making strategies
further enhance systemic efficiency by 2-5%. The most substantial gains,
however, emerge from Al-powered planning tools, with supervised and
reinforcement learning models demonstrating up to 14-16% fuel burn
reductions in simulations. When combined with the use of SAF—which can
increase engine efficiency and reduce lifecycle carbon emissions by 50-
80%—route optimization strategies transition from operational
enhancements to core enablers of aviation decarbonization.

However, the realization of these gains is not without significant
barriers. Technological constraints include the lack of real-time data
integration across stakeholders, limitations in avionics system
interoperability, and the absence of standardized protocols for Al
explainability and certification. Operational barriers persist in the form of
pilot trust, ATC workload, and inertia in regulatory change. SAF
deployment is also hindered by limited supply, high cost, and uneven
certification availability, especially in regions lacking supporting
infrastructure.

Equity and global access further complicate deployment. While
advanced optimization tools are being rolled out in Europe and North
America, many regions in the Global South lack the data, digital
infrastructure, and financial mechanisms to implement even basic dynamic
routing systems. The current distribution of SAF production also favors
developed nations, risking disproportionate environmental benefits and
creating a two-tiered aviation system. These disparities must be addressed
through coordinated international governance, funding mechanisms, and
data-sharing agreements.

Looking forward, the aviation industry must adopt a multi-dimensional
strategy that unites operational excellence with environmental
responsibility. This includes:

®  Expanding regulatory pathways for the certification of Al-
7
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powered planning and decision tools;

®  Scaling global SAF production and harmonizing fuel standards;

® Investing in digital infrastructure for real-time trajectory
management across regions;

®  Promoting open-access data frameworks and cooperative
optimization algorithms;

®  Ensuring that capacity-building efforts are inclusive and
geographically balanced.

Aviation route optimization is no longer an isolated technical upgrade

but a critical pillar of sustainable flight operations. With increasing
pressure from regulators, the public, and investors to decarbonize
aviation, route optimization offers a cost-effective, infrastructure-light,
and immediately actionable solution. If coupled with scalable SAF
adoption and global equity frameworks, it can deliver real progress
toward ICAOQ’s aspirational goals of carbon-neutral growth and net-zero
emissions by 2050.

By bridging the gap between research and operational deployment,

and by ensuring inclusive access to tools and fuels, the aviation industry
can move toward a smarter, cleaner, and more equitable future in global

air transportation
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