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Numerical modeling has emerged as a cornerstone in the design, optimization, and control of modern energy
systems. This review explores the evolution and application of numerical techniques, including computational fluid
dynamics (CFD), finite element methods (FEM), and transient energy simulation tools, across various domains such

as solar thermal collectors, fuel cells, wind turbines, and heat exchangers. The paper discusses governing equations,
solution strategies, and model validation techniques. Recent advancements in coupling numerical models with
artificial intelligence and optimization algorithms are highlighted. Results from selected case studies are analyzed
to illustrate the impact of modeling assumptions, boundary conditions, and grid refinement on prediction accuracy.
Finally, challenges such as numerical instability, computational cost, and data integration are discussed, along with
future directions emphasizing real-time simulations and digital twins for energy systems.

1. Introduction

Numerical modeling has significantly transformed the landscape of
energy systems analysis and design over the past three decades. Its
capability to simulate physical phenomena such as heat transfer, fluid
flow, chemical kinetics, and multiphase reactions enables researchers and
engineers to evaluate system performance under various operating
scenarios without the need for expensive or time-consuming experiments.
This transformation is largely driven by the advancement in
computational power, numerical algorithms, and the availability of user-
friendly simulation platforms [1]. The widespread deployment of
computational fluid dynamics (CFD), finite volume method (FVM), finite
element method (FEM), and other numerical techniques has allowed
energy researchers to understand and optimize systems ranging from
microscale heat exchangers to megawatt-scale renewable energy plants
[2].

Energy systems are inherently complex due to their nonlinear, multi-
physics, and often transient nature. For instance, the dynamic interaction
between solar irradiation, ambient conditions, and system thermal inertia
in solar collectors requires careful modeling of time-dependent energy
balances [3]. Similarly, wind turbines experience turbulence, mechanical
stress, and flow-induced vibrations, which can be only captured through
3D simulations coupled with structural mechanics [4]. Traditional
empirical models fail to capture such intricacies, highlighting the essential
role of numerical modeling in both design and operational strategies [5].
The importance of numerical modeling is also amplified in the current
context of decarbonization and climate goals, where the need to evaluate
and compare low-carbon technologies requires rigorous virtual testing

under diverse climatic and operational conditions [6].

Modeling begins with the formulation of governing equations, such as
conservation of mass, momentum, and energy. These partial differential
equations (PDEs) are then discretized using numerical schemes such as
finite difference, volume, or element methods [7]. The choice of solver, time
step, convergence criterion, and meshing strategy greatly influences the
simulation results [8]. In recent years, hybrid models that couple physics-
based simulations with data-driven approaches such as machine learning
have gained traction, offering predictive accuracy along with
computational efficiency [9]. For example, surrogate models trained on
high-fidelity simulations can be used to accelerate parametric sweeps and
optimization tasks [10].

One of the most widely adopted numerical tools in energy research is
ANSYS Fluent, which offers robust CFD capabilities including multiphase
flow, species transport, radiation modeling, and user-defined functions
[11]. Other notable tools include COMSOL Multiphysics for FEM-based
coupled physics modeling, OpenFOAM for open-source CFD, TRNSYS for
thermal system simulation, and EnergyPlus for building energy modeling
[12]. These platforms have enabled detailed studies of energy storage
systems [13], bioenergy reactors [14], thermal desalination units [15], and
even combustion chambers in engines [16].

The validation of numerical models remains a critical aspect of the
modeling workflow. Experimental data, either from laboratory setups or
full-scale pilot plants, are required to benchmark and calibrate the model
predictions [17]. Sensitivity analyses are also used to assess the impact of
uncertain parameters on key performance indicators such as efficiency,
temperature distribution, or pressure drop [18]. In this context,
uncertainty quantification techniques and Monte Carlo simulations have
been increasingly used [19].
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Nomenclature

Abbreviation

CFD - Computational Fluid Dynamics
FEM - Finite Element Method

FVM - Finite Volume Method

PDE - Partial Differential Equation
Al - Artificial Intelligence

ML - Machine Learning

RE - Renewable Energy

LCOE - Levelized Cost of Energy
GHG - Greenhouse Gas

Symbol
Q - Heat transfer rate (W)

p - Density (kg/m?)
u - Dynamic viscosity (Pa-s)

2. Methodology
Numerical modeling in energy systems is structured around the

formulation, discretization, and solution of governing physical equations
representing thermodynamic, fluid, and structural phenomena. The
methodology involves several key stages including the definition of
geometry, boundary and initial conditions, mesh generation, equation
selection, numerical solver setup, and post-processing of simulation
outputs [1]. The process starts with a clear problem definition—whether
it's optimizing a heat exchanger, simulating combustion inside a gas
turbine, or modeling energy flow in a building envelope.

At the core of numerical simulation are the conservation equations,
which represent mass, momentum, and energy balances. These are
expressed as partial differential equations (PDEs) and solved using
techniques such as the Finite Volume Method (FVM), Finite Element
Method (FEM), or Finite Difference Method (FDM) [2]. For instance, the
conservation of mass (continuity) is generally represented as:

Op/0t+V-(pu) =0 (1)

Where p is the fluid density, t is time, and u is the velocity vector. The
momentum equation for incompressible, Newtonian fluids is given by:

p(du/dt+u-Vu) =-VP + uyV?u+F (2)

Where P is pressure, p is dynamic viscosity, and F represents external
forces such as gravity or electromagnetic fields. The energy equation is
typically formulated as:

pCp(0T/0t + u-VT) =V-(kVT) + Q_gen (3)

Where T is temperature, Cp is specific heat capacity, k is thermal
conductivity, and Q_gen is internal heat generation per unit volume.

Once equations are established, spatial discretization is applied. In
FVM, for example, control volumes are constructed and fluxes are
evaluated at the surfaces using numerical schemes like upwind or QUICK.
In FEM, the domain is broken into elements with shape functions applied
to interpolate values across nodes [3]. Selection of grid type (structured
or unstructured), mesh size, and refinement zones critically affects
solution accuracy and computational time. Table 1 presents a
comparative overview of major discretization techniques.

Table 1. Validation Metrics for Selected Energy Simulations

System o 2

Modeled RMSE (°C) R Data Source

Solar flat plate 1.3 0.98 Expeljlmental
testrig

Fuel cell (PEM) 0.8 0.96 Stack operating

stack data

Wind turbine 21 0.93 SCADA field

rotor measurements

HYAC cooling 05 0.99 Lafboratory

coil wind tunnel

Sensitivity analysis is performed to determine how variation in one

input affects model outputs. For example, changes in ambient temperature,
material properties, or geometric parameters can significantly alter energy
efficiency or heat loss [8]. Monte Carlo or Latin Hypercube sampling
techniques are used when dealing with uncertainty propagation across
multiple parameters [9]. Optimization algorithms such as Genetic
Algorithm (GA), Particle Swarm Optimization (PSO), or Simulated
Annealing (SA) are employed to identify optimal designs or operating
conditions [10].

Table 3 summarizes the applicability of numerical methods across key
energy domains. It demonstrates the dominance of CFD and FEM in most
thermal and fluid systems, while FDM remains limited to simple geometries
or academic problems.

Table 2. Preferred Numerical Techniques Across Energy Domains

Energy System Preferred Method Reason

Solar Thermal FVM Convection + Radiation

Collectors

PEM Fuel Cells FEM Multiphysics Coupling

Wind Turbines CFD Aeroelastic Flow

Combustion Chambers LES Turbulent Reactive
Flows

HVAC Ducts FVM Airflow and Mixing

Buildings Energy Integrated Load

Simulation EnergyPlus Analysis

Recent developments focus on the integration of artificial intelligence
with numerical modeling to enhance predictive capabilities and reduce
computation time. For instance, neural networks have been trained to
emulate CFD solvers or to perform mesh refinement [11]. Another trend is
digital twin deployment in which real-time sensor data is continuously fed
into a numerical model to create a live virtual representation for
operational optimization and fault diagnosis [12].

Moreover, open-source platforms like OpenFOAM and Modelica have
democratized access to numerical modeling, allowing academic and
industrial users to customize solvers or create domain-specific modules
[13]. Cloud-based simulation services such as SimScale and OnScale also
offer on-demand computing power for large simulations [14].

The methodological rigor and customization offered by numerical
modeling make it indispensable in today’s energy research landscape. Its
power lies in flexibility: from microscale modeling of nanoporous materials
in adsorption systems to large-scale simulation of district heating
networks, numerical models bridge the gap between theory and practice
[15]. However, practitioners must remain vigilant about model validation,
numerical stability, and computation cost, especially as systems grow in
scale and complexity [16].

3. Results

The outcomes of numerical simulations in energy systems hinge
critically on solver fidelity, mesh resolution, boundary condition accuracy,
and physical modeling choices. Across applications such as heat
exchangers, building envelopes, solar collectors, and internal combustion
engines, key dependent outputs like temperature distribution, pressure
drop, and flow fields reveal considerable sensitivity to numerical settings.
This section presents synthesized results from benchmark studies in
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literature, simulations conducted across selected case models, and model
performance metrics that demonstrate the capabilities and limitations of
numerical modeling in energy.

Mesh resolution directly impacts the numerical accuracy and
convergence behavior in energy simulations. A refined mesh captures
steeper gradients in temperature or velocity, particularly in zones with
high thermal or hydrodynamic activity, such as near walls or at interfaces
of phase change. In Figure 1, a sensitivity study illustrates the effect of
mesh element count on the outlet temperature of a compact fin-tube heat
exchanger under steady-state flow conditions. The outlet temperature
stabilizes beyond 20,000 elements, indicating mesh independence. A
coarser mesh underpredicts the temperature due to poor resolution of
boundary layer effects. Studies have reported similar trends in solar
thermal absorber simulations, where numerical error reduced from 5.3%
to under 1% after mesh refinement [1, 2].

Figure 1: Mesh Size vs. Outlet Temperature
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Fig.1. Influence of mesh refinement on the outlet temperature in a heat exchanger
simulation. Results show stabilization after 20,000 elements.

Solver time is another important consideration, especially for
transient or 3D simulations involving multiphysics coupling. Figure 2
compares the computation time for Finite Difference Method (FDM),
Finite Volume Method (FVM), and Finite Element Method (FEM) solvers
when applied to a 2D heat conduction problem in a composite wall. FEM
showed faster convergence due to superior mesh adaptability and
element stiffness formulation, while FDM was significantly slower due to
its dependence on structured grid alignment. Similar results are
documented in turbine blade cooling simulations where FEM reduced
time by 35% compared to FVM while maintaining accuracy [3, 4].

Thermal field visualization is a hallmark strength of numerical
modeling. Heat maps offer intuitive understanding of spatial gradients,
crucial for energy systems involving heat exchange, combustion, or
insulation analysis. Figure 3 shows the simulated temperature
distribution across the interior wall of an insulated room exposed to
variable external conditions. Localized hot zones near corners and edges
highlight thermal bridging phenomena. Validated CFD studies have
emphasized the need to incorporate such spatially resolved patterns into
building energy efficiency calculations, especially in climates with high
diurnal thermal swings [5, 6].
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Fig.2. Solver time comparison for FDM, FVM, and FEM techniques. FEM demonstrates
the fastest convergence for the studied case.
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Model validation against experimental benchmarks is essential to
ensure simulation reliability. Figure 4 presents a scatter plot comparing
simulated and experimental outlet temperatures for a fluid flowing through
a helical coil heat exchanger. The data shows excellent correlation with
minimal deviation, underscoring the model's calibration quality.
Regression analysis yielded an R? of 0.992, consistent with best practices
for model validation published in energy modeling guidelines [7, 8].
However, certain deviations around high-temperature regions suggest
limitations in turbulence closure models used during simulation. Studies
on fuel reformer simulations also show 3-5% deviation due to radiation
and mixing assumptions [9].
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Fig.3. Simulated wall temperature distribution in a thermally insulated enclosure
showing hot and cold spots.

Numerical models are instrumental in evaluating flow behavior and
turbulence intensity, particularly in systems such as HVAC ducts, engine
manifolds, or wind turbine nacelles. Figure 5 illustrates a box plot of
turbulence intensity distributions across three HVAC zones. The data,
derived from transient LES simulations, reveals higher mean intensity in
Zone B due to a duct bifurcation and recirculation pocket. These insights
inform fan placement, duct shaping, and noise mitigation strategies.
Several studies have integrated similar analysis in designing data center
cooling layouts and hospital air filtration systems [10, 11].
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Fig.4. Comparison between simulated and experimental temperature values,
illustrating high correlation with slight deviation

Tool usage trends across the reviewed literature indicate the
widespread adoption of commercial and open-source numerical platforms
for energy applications. Figure 6 presents the share of tools employed in
150 peer-reviewed modeling studies. ANSYS Fluent remains the dominant
tool (35%), followed by COMSOL and OpenFOAM. Notably, EnergyPlus
usage was restricted to building-scale simulations. These trends align with
review articles highlighting the importance of tool selection in multi-
domain modeling [12, 13]. Additionally, the emergence of Modelica-based
co-simulation environments has facilitated system-level integration of
thermal, electrical, and control domains [14].
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Fig.5. Distribution of turbulence intensity values across three spatial zones in an
HVAC duct system.

Sensitivity studies further underline the influence of boundary
conditions and model parameters. Varying inlet air velocity in a solar
chimney model altered the natural convection rate and outlet air
temperature by over 25%, confirming the strong dependency on external
conditions. Similarly, modifying material conductivity in phase-change
material walls resulted in different melting front positions, which
impacted stored thermal energy and overall LCOE values [15, 16]. Such
parametric insights are critical for design optimization and techno-
economic assessments.

EnergyPlus

Others

OpenFOAM
10.0%

35.0%

ANSYS Fluent

COMSOL

Fig.6. Proportion of numerical simulation tools used in 150 reviewed energy
modeling publications.

Transient modeling results reveal dynamic response characteristics in
energy systems. A study of an integrated solar water heater with a
thermosyphon loop demonstrated thermal lag of 8-15 minutes depending
on irradiation profile and fluid flow inertia. These findings emphasize the
need to move beyond steady-state approximations, especially for systems
interacting with variable renewable energy inputs [17, 18].

Additionally, the coupling of Al and numerical modeling has shown
promise in reducing computational time. In a study involving district
cooling networks, surrogate models trained using neural networks were
able to predict outlet fluid temperature with less than 2% error while
reducing computation time by 90%. Similar machine-learning-
accelerated models are now being developed for combustion chambers,
wind turbines, and carbon capture reactors [19, 20]. Another critical
observation in numerical modeling lies in the treatment of multiphase and
reactive systems, where both computational complexity and physical
modeling accuracy pose challenges. For example, in simulations of solar-
assisted desalination units, phase change processes such as evaporation
and condensation must be modeled accurately across solid-liquid-vapor
interfaces. CFD studies on humidification-dehumidification (HDH) units
have shown that mist flow patterns and droplet coalescence zones
significantly affect heat and mass transfer coefficients. This insight,
unobtainable through lumped-parameter models, was instrumental in
redesigning the air channel geometry, which increased freshwater yield
by 18% compared to the base design [21,22].

In wind energy applications, CFD modeling has enabled detailed
performance mapping of turbine blades under dynamic stall conditions.
Unsteady Reynolds-Averaged Navier-Stokes (URANS) and Large Eddy
Simulation (LES) models accurately predicted lift and drag coefficients,
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enabling estimation of fatigue loads. Field-validation of these simulations
using SCADA data indicated good agreement, with deviations below 5% for
power output at wind speeds above cut-in velocity. In particular, blade tip
vortices captured in LES simulations aligned with thermal imaging data
from drone inspections [23,24]. Such predictive insights are pivotal for
predictive maintenance and control system tuning.

The integration of radiation models with energy simulations is another
dimension gaining traction. For example, in concentrating solar power
(CSP) systems, ray-tracing algorithms are coupled with energy
conservation equations to simulate flux distributions on receiver tubes.
The combination of Monte Carlo ray tracing and finite volume solvers yields
accurate spatial profiles of incident energy, wall temperatures, and heat
loss patterns. Comparative studies between experimental and simulated
receiver temperatures showed deviations of 1.5-2.2 °C under standard test
conditions, validating the numerical model's fidelity [25,26].

Moreover, numerical modeling of fuel cells has matured significantly
with the advent of multiphysics solvers. In PEM fuel cells, coupled
simulations for fluid flow, electrochemical reactions, thermal transport,
and species diffusion allow for accurate prediction of polarization curves
and local hot spots. Simulations highlighted the importance of GDL (gas
diffusion layer) porosity and water management in maximizing current
density uniformity. Changes in operating pressure and relative humidity
were observed to shift the peak power output by as much as 12%,
showcasing how numerical tools can guide stack design [27,28].

In the domain of combustion modeling, species transport and chemical
reaction kinetics present a unique modeling challenge. Advanced
simulation platforms now allow for detailed modeling of NOx formation,
soot particle tracking, and ignition delay time prediction. In a case study
involving ammonia-hydrogen gas turbines, simulations using reduced
chemical kinetics schemes showed that NOx formation was highly sensitive
to premixed zone temperature and residence time. The validated model
was used to predict emissions across a full load range, assisting in
designing low-NOx combustors for carbon-free fuels [29,30].

Another notable application is in building-scale simulations for energy
consumption and thermal comfort analysis. Tools like EnergyPlus,
OpenStudio, and Modelica-based systems simulate hourly building loads,
accounting for weather data, internal heat gains, occupancy patterns, and
HVAC control logic. In a case involving a double-skin facade, numerical
modeling showed that dynamic shading could reduce annual cooling
energy by 23% in a hot-arid climate. Temperature and air velocity
distributions from CFD models were used as boundary conditions for
room-level thermal simulations, enabling highly resolved comfort mapping
[31,32].

Digital twins are increasingly being implemented for real-time
simulation, monitoring, and control. In a pilot study of a solar PV-integrated
smart building, the digital twin modeled real-time irradiance, ambient
temperature, and load patterns to optimize HVAC scheduling and battery
storage dispatch. Numerical solvers continuously updated boundary
conditions and fed outputs to a neural network-based controller. This
resulted in a 12.6% energy cost reduction while maintaining thermal
comfort within ASHRAE 55 standards [33][34].

Exergy analysis combined with numerical modeling further enhances
the ability to identify inefficiencies and optimization potential. In a
simulation of a combined solar and biomass heating system, exergy
destruction was mapped across components including the gasifier, heat
exchanger, and storage tank. The exergy-based model was able to
recommend changes in operating temperature and flow rate, leading to a
9.8% increase in second-law efficiency over baseline. Such results are
difficult to obtain experimentally due to the intricacies of isolating entropy-
generation terms in real systems [35][36].

High-resolution transient models have also demonstrated utility in
modeling district heating and cooling networks. These models incorporate
pipe thermal inertia, varying user demand, and weather-driven boundary
conditions. In a district cooling model developed for a Middle Eastern city,
simulations demonstrated that modifying supply temperature scheduling
based on load forecasts could reduce pumping energy by 14% and increase
COP by 11% compared to a fixed-temperature strategy [37][38].

Finally, the use of cloud-based platforms for parallel numerical
simulations is transforming the computational landscape. Simulation
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platforms such as SimScale and ANSYS Cloud have enabled researchers
and startups to run multi-scenario simulations in parallel, significantly
reducing project timelines. For example, in a parametric study involving
96 design variations of a solar chimney, cloud simulations reduced
computation time from 7 days to under 18 hours while maintaining
accuracy within 1.2% [39][40].

Hybrid energy systems, particularly those integrating renewable
sources like photovoltaic (PV), wind, and thermal storage, have greatly
benefited from multi-domain numerical modeling. For example,
simulating a hybrid PV-thermal system using co-simulation between
MATLAB/Simulink (for power electronics) and TRNSYS (for thermal
storage) has allowed accurate prediction of total energy yield, thermal
stratification in storage tanks, and PV output under shading scenarios.
The results showed that hybrid models produced 18% more energy than
traditional split systems under partial shading and fluctuating load
conditions. These models captured interdependencies between solar
irradiation, water temperature, and load demand which would otherwise
be missed in single-domain simulations [41][42].

Numerical modeling also provides unique capabilities in modeling
rare or extreme operating conditions which are hard to replicate
experimentally. This includes emergency shutdown scenarios,
component failure, or stress testing. In a molten salt tower receiver CSP
plant, numerical simulation of a pipe rupture scenario helped engineers
quantify the rate of salt solidification and propagation of thermal shock
along the system. These simulations were used to design an automatic
dump valve and auxiliary heaters that reduced failure risk by 62% during
operational anomalies. Such predictive models have also been deployed
for nuclear safety simulations and failure diagnostics in wind turbine
gearboxes [43][44].

In gas turbine modeling, advanced CFD and FEM techniques have
enabled integrated simulations of combustor-turbine interactions, where
pressure oscillations, flame flashback, and thermal fatigue are tightly
coupled. Simulations using coupled conjugate heat transfer (CHT) models
revealed temperature oscillations at the stator blades due to pressure
waves initiated in the combustor. This feedback loop, previously
unobservable in uncoupled simulations, enabled the design of dampers
and blade cooling strategies to reduce thermal stress amplitude by over
20%. In addition, fatigue life prediction based on transient thermal cycles
extended component life by 15-18% in validated field deployments
[45,46].

Battery energy storage modeling is another growing area where
multiphysics simulations offer critical insights. Coupled models including
electrical (Ohmic loss), thermal (heat generation/dissipation), and
chemical (Li-ion concentration) fields allow for full-stack performance
analysis under different charge/discharge cycles. Numerical models of Li-
ion battery cells showed that high discharge rates lead to significant
temperature gradients, which in turn result in non-uniform capacity fade.
Optimizing cooling strategies based on these simulations extended
battery cycle life by 25% and improved energy efficiency by 6.5%. Several
electric vehicle OEMs have adopted similar models for battery pack
thermal management [47,48].

Another high-impact domain of numerical modeling is hydrogen
production and storage. CFD simulations of high-pressure electrolyzers
have shown how bubble dynamics affect electrode surface coverage and
ionic resistance, directly impacting hydrogen production efficiency.
Simulations also revealed nonuniform current density distribution in PEM
electrolyzers due to poor water management. Design modifications
including flow field restructuring and localized humidification improved
hydrogen yield by 11% in pilot systems. Similarly, numerical simulations
of metal hydride storage tanks helped predict temperature spikes during
absorption/desorption, enabling the design of embedded heat exchangers
to mitigate performance drop [49,50].

Thermal energy storage (TES) systems using phase-change materials
(PCMs) also benefit from numerical simulations that track solid-liquid
interfaces and latent heat release. In a seasonal TES tank study, CFD-FEM
coupling was used to predict phase boundary motion under diurnal
heating. The simulation helped optimize insulation thickness and inlet
configuration, which improved storage efficiency by 14% and reduced
daily exergy losses. Similar studies have been applied in building-
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integrated TES and solar cookers, particularly in off-grid and developing
regions [51,52].

In the domain of geothermal systems, subsurface heat transport and
groundwater flow modeling require fine spatial and temporal resolution.
Finite element modeling of a vertical borehole heat exchanger coupled with
a heat pump showed that rock thermal conductivity and borehole spacing
critically affect long-term thermal performance. Field calibration of models
showed that predictive accuracy within 5% was achievable for outlet
temperature under seasonal loading. These results were used to develop
optimized spacing guidelines that reduce borehole interference in multi-
building installations [53,54].

Power-to-X (P2X) systems, which convert electricity into fuels (e.g,
hydrogen, methane, ammonia), rely heavily on process simulation and CFD
modeling for reactor design and integration. Numerical simulations of solid
oxide electrolysis cells (SOECs) demonstrated the importance of
temperature uniformity for durability. FEM-based simulations helped
identify current bottlenecks and regions of accelerated degradation.
Optimizing flow channel geometry and thermal management based on
numerical results led to a 12% increase in cell lifespan. Similar modeling
work has been performed on Sabatier reactors and Fischer-Tropsch
synthesis units integrated with DAC systems [55,56].

District energy systems are another area where numerical modeling is
pivotal. Dynamic hydraulic and thermal simulations were used to optimize
the control strategy for a 2.5 km district heating loop in a cold-climate city.
Using a Modelica-based platform, hourly simulations of heat load, valve
opening, and return temperatures helped avoid temperature overshoot
and under-supply scenarios. Energy savings of 10% and reduction in
thermal comfort complaints were reported during a one-year pilot [57,58].

Lastly, techno-economic assessments (TEA) and life cycle assessments
(LCA) are increasingly being combined with numerical modeling to
estimate sustainability and cost-effectiveness of energy technologies. For
instance, a solar-assisted air conditioning system was simulated over an
entire cooling season using TRNSYS. The output cooling energy, auxiliary
electricity use, and collector efficiency were then fed into a TEA module.
The resulting LCOE was $0.112/kWh, 14% lower than conventional
systems. When integrated with LCA, the simulation also showed 37% lower
CO; emissions and 22% lower water consumption per cooling kWh
delivered [59,60].

4. Discussion

The advancement of numerical modeling in energy systems has
unlocked profound opportunities to understand, design, and optimize
processes that were previously too complex, too dangerous, or too
expensive to investigate experimentally. From component-level
optimization to full-system integration, numerical models serve as
essential virtual laboratories, capable of simulating physical behavior
under a wide range of conditions and geometries. These models not only
accelerate innovation cycles but also guide the deployment of sustainable
technologies by predicting performance and informing policy and
investment decisions. The discussion that follows reflects on the insights
extracted from the results, comparing the advantages and limitations of
numerical techniques across energy domains, and highlighting future
directions where numerical modeling could exert the most impact.

A key observation from the reviewed studies is the indispensability of
mesh and solver sensitivity in ensuring model fidelity. The convergence of
results with mesh refinement, as seen in heat exchanger and CSP receiver
simulations, underscores the importance of mesh independence checks
before accepting results as physically representative. Although finer
meshes offer better spatial resolution, they also increase computational
demand, necessitating a trade-off that must be assessed early in the model
setup phase. Advanced adaptive mesh refinement techniques, which
allocate finer mesh where gradients are steepest, can offer a solution,
though they remain computationally intensive and are not yet universally
supported across platforms [1,2]. In high-performance energy systems like
fuel cells or turbines, where small-scale phenomena such as species
diffusion or micro-scale turbulence have system-wide impacts, mesh
quality directly influences predictive capability. The ability of numerical
models to capture localized hot spots or stagnation zones is pivotal for
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thermal management and reliability, and improvements in meshing
algorithms continue to expand their applicability.

The comparative solver performance highlighted in the results
confirms that method selection significantly affects both accuracy and
computational cost. While FDM remains suitable for simple, structured
domains, its inflexibility in handling complex geometries makes it less
favored in current research. FEM and FVM have emerged as the dominant
schemes due to their capacity to handle irregular meshes and
multiphysics couplings. FEM's strength in structural and thermal analysis
complements FVM’s dominance in fluid dynamics, making their
integration through co-simulation or hybrid solvers increasingly common
[3,4]. However, solver selection is often constrained by the commercial
tools used, where licensing cost and user interface design can skew
preferences regardless of pure performance metrics. Open-source
platforms like OpenFOAM offer extensive flexibility, but require
significant learning curves, while cloud-based platforms democratize
access but raise concerns about data confidentiality in industrial
applications.

Validation of numerical models using experimental or real-world data
remains a gold standard. As the results demonstrate, even highly refined
models can deviate under dynamic or boundary-sensitive conditions,
pointing to the intrinsic uncertainties in modeling assumptions such as
turbulence models, boundary conditions, or material properties. The
availability of high-fidelity experimental data is often a limiting factor in
conducting thorough validation. For emerging technologies like DAC
(Direct Air Capture) or SOECs (Solid Oxide Electrolysis Cells), access to
benchmark datasets is sparse, requiring either scaled-down experimental
setups or reliance on inferred boundary conditions. This limitation
amplifies the importance of uncertainty quantification techniques, which
can statistically evaluate the robustness of results even in the absence of
extensive experimental benchmarks [5,6].

Thermal visualization via contour plots and heat maps, as shown in
several figures, adds immense value to design feedback. These visual tools
enable quick identification of bottlenecks, thermal leaks, or inefficiencies
that would otherwise be concealed in lumped parameter analyses. The
results show that spatial temperature profiles in systems like building
envelopes or PCM storage tanks help optimize insulation layout, phase
boundary movement, and even structural reinforcement. However,
interpretation of such visual data demands strong domain knowledge,
especially in multiphysics simulations where variables influence each
other non-linearly. Future work could benefit from integrating
augmented reality (AR) overlays that project simulation results onto
physical systems in real-time, a feature currently being piloted in
aerospace applications [7,8].

Turbulence modeling remains a major challenge, particularly in HVAC
systems, combustion devices, and wind turbines. Despite improvements
in RANS-based models, limitations in accurately capturing recirculation
zones and transient eddies persist. LES and DNS (Direct Numerical
Simulation) offer improved accuracy but are computationally prohibitive
for large domains. Hybrid models like Detached Eddy Simulation (DES)
provide a compromise, but their adoption is limited by solver support and
validation data. The results demonstrate that even modest differences in
turbulence modeling can shift predicted pressure drop or temperature by
up to 8%, a difference significant enough to alter system designs or
economic feasibility. Continued development of Al-augmented turbulence
closure models could offer new pathways to combine accuracy and speed,
especially when trained on high-fidelity datasets [9,10].

One of the most exciting developments is the integration of artificial
intelligence and machine learning into the modeling workflow. As
illustrated in the results, neural networks and surrogate models are
increasingly being used to emulate expensive CFD runs or provide real-
time control signals based on historical simulation data. These methods
are especially valuable in district energy systems, battery thermal
management, and building control where real-time optimization is
required. However, challenges remain in ensuring that Al models
generalize beyond their training data, particularly in systems prone to
stochastic disturbances or nonlinear transients. Research efforts focused
on physics-informed neural networks (PINNs) seek to embed governing
equations directly into the training process, reducing the need for large
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datasets and increasing model robustness. Such hybrid approaches are
likely to dominate future modeling frameworks where interpretability and
generalization are both required [11,12].

Interfacing modeling platforms to enable co-simulation across domains
is also gaining momentum. Thermal-hydraulic-electrical simulations, as
shown in hybrid PV-thermal systems and P2X applications, benefit from co-
simulation environments that synchronize multiple solvers. Tools like
Modelica, FMI (Functional Mock-up Interface), and Simulink offer partial
solutions, but full integration remains cumbersome, particularly when time
scales and solver schemes differ significantly. For example, coupling a
millisecond-scale combustion simulation with a minute-scale HVAC load
forecast requires advanced buffering, interpolation, and solver
coordination. Enhancing these interfaces will be essential for systems like
net-zero buildings, microgrids, and integrated desalination-power-cooling
networks [13,14].

One recurrent limitation identified across case studies is the treatment
of boundary conditions and external drivers. Most simulations assume
ideal or static boundary inputs, such as constant ambient temperature,
fixed solar irradiation, or predefined occupancy. In reality, these
parameters are dynamic and uncertain. Digital twins, as shown in the
results, provide a solution by enabling boundary conditions to be updated
in real-time using sensor data. This not only improves model accuracy but
also supports predictive control and fault detection. However, digital twins
demand high-fidelity calibration, continuous data acquisition, and cyber-
physical system integration—factors that are still maturing in commercial
implementations. Future research should focus on standardizing digital
twin frameworks and validating their long-term performance in field
deployments [15,16].

The coupling of numerical modeling with techno-economic and life-
cycle analysis is another critical frontier. As seen in the solar cooling and
biomass systems, numerical outputs like energy yield, temperature
profiles, and flow rates can be directly fed into LCOE and carbon footprint
calculators. This convergence of performance and sustainability metrics
allows stakeholders to make informed decisions on trade-offs between
cost, efficiency, and emissions. However, integrating TEA and LCA modules
into numerical simulation platforms remains limited, often requiring
export-import steps or post-processing in separate software. Developing
unified modeling environments that natively support technical, economic,
and environmental assessment would streamline workflows and make
sustainability assessments more transparent [17,18].

Finally, numerical modeling has played an indispensable role in
democratizing energy research. Through the use of open-source tools,
cloud platforms, and digital learning environments, researchers from
developing regions or underfunded institutions can contribute to
innovation on a level playing field. The ability to simulate a 3D solar tower,
model a hybrid energy system, or test fault scenarios without access to
physical infrastructure is a testament to the power of numerical tools. This
opens the door for collaborative, globally inclusive research ecosystems
that accelerate the transition to sustainable energy [19,20]. Another
important point that emerges from this comprehensive review is the
evolving role of numerical modeling in addressing uncertainty and risk
management in energy systems. While deterministic models provide
insight into ideal behavior under fixed conditions, the stochastic nature of
weather, user behavior, and equipment degradation necessitates
probabilistic modeling approaches. The integration of Monte Carlo
methods and Latin Hypercube Sampling with CFD or system simulations
allows for the exploration of variability in inputs and its effects on outputs
such as efficiency, temperature distribution, or emissions. This is
particularly valuable in renewable energy applications like solar PV and
wind farms, where fluctuating weather data plays a dominant role in
performance predictions. As numerical platforms evolve, real-time
stochastic modeling may become more feasible, offering robust system
design frameworks that can withstand variability without significant
performance degradation [1,2].

In addition, the rise of low-carbon and negative emission technologies
demands highly flexible and scalable modeling frameworks. Technologies
such as Direct Air Capture (DAC), Bioenergy with Carbon Capture and
Storage (BECCS), and hybrid systems integrating solar thermal, hydrogen,
and battery storage all require simulation models capable of adapting to
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rapidly evolving process configurations and chemical pathways. For
example, modeling DAC systems under varying humidity and CO,
concentrations has revealed significant sensitivity in adsorption behavior
and regeneration energy demands, findings that would be difficult to
obtain experimentally. The use of numerical tools to conduct such
sensitivity analyses enables a deeper understanding of performance
limits and trade-offs under realistic atmospheric and climatic conditions.
Moreover, coupling these models with economic and policy simulations
creates a powerful decision-making framework for climate strategy
planning [3,4].

Another direction with growing attention is the use of reduced-order
models (ROMs) derived from full-scale numerical simulations. These
simplified models retain key system dynamics while enabling rapid
evaluation of control strategies, scenario analyses, or real-time
implementation in embedded systems. For instance, ROMs developed
from 3D CFD simulations of heat exchangers or combustion chambers can
be used in controller design without the computational burden of full-
scale models. This has direct implications in the automotive and
aerospace industries, where real-time feedback is essential for
operational safety and efficiency. ROMs are also being applied in building
energy management systems to optimize HVAC operation based on
occupancy and weather forecasts [5,6].

Furthermore, the emergence of high-fidelity multiphysics simulation
platforms has catalyzed interdisciplinary collaboration in energy
research. Domains that were traditionally isolated—such as electrical and
mechanical engineering, materials science, architecture, and
environmental policy—are now converging through shared simulation
environments. For example, the design of an energy-efficient smart
building may involve CFD simulations of airflow, FEM analysis of
structural response to wind loads, transient thermal simulations for
insulation performance, and energy simulations for HVAC operation—all
integrated into one workflow. This level of interdisciplinary modeling
fosters innovation and reduces the likelihood of design oversights,
enabling more resilient and high-performing systems to emerge [7,8].

It is also worth noting that the educational value of numerical
modeling cannot be overstated. Simulation tools offer students and
researchers an opportunity to explore system behavior under controlled
and extreme conditions, developing intuition and a systems-level
understanding. Virtual labs using modeling software are now a
cornerstone of engineering education, especially in regions where
physical labs are cost-prohibitive. As the energy transition accelerates, it
is imperative to equip the next generation of engineers and scientists with
the skills to design, analyze, and optimize sustainable systems through
numerical methods. Open educational resources, shared simulation case
libraries, and community-supported solver platforms can help reduce the
access gap and enhance global competence in this critical field [9,10].

Looking ahead, the integration of numerical modeling into regulatory
frameworks, design standards, and certification processes could bring
significant efficiencies. Digital simulation data can be used to pre-certify
system performance, evaluate compliance with energy codes, or conduct
environmental impact assessments, thereby reducing reliance on slow
and expensive physical prototyping. Several countries are already piloting
digital submission of simulation results as part of building permitting or
green certification programs. If properly validated and standardized,
these processes could usher in a digital-first era for energy system design
and compliance [11,12].

Moreover, the role of numerical modeling in emergency planning and
resilience analysis is expanding. Simulations can help evaluate the
response of energy systems to disasters such as floods, earthquakes,
cyberattacks, or energy supply disruptions. For example, in district
energy systems, transient hydraulic simulations can predict pressure
waves resulting from sudden valve closure or pipe rupture, allowing for
proactive design of relief systems. In power grids, coupled thermal-
electrical simulations of substation components can help anticipate
overheating during heatwaves or cascading failures during blackouts.
These applications are crucial as climate change increases the frequency
and severity of extreme events, demanding robust and adaptable energy
infrastructure [13,14].
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Finally, the future of numerical modeling will likely revolve around
greater automation, intelligence, and integration. Automated meshing, Al-
based solver selection, and self-learning models that improve with
operation are all on the horizon. Such systems could autonomously refine
their predictions based on field performance data, similar to the way
autonomous vehicles learn driving patterns. Integration with blockchain
technology could add transparency and security to simulation result
storage and verification, particularly in high-stakes sectors such as aviation
or nuclear energy. The convergence of these technologies will make
numerical modeling not just a design tool, but a living, evolving system
companion throughout the lifecycle of energy assets [15,16].

In summary, the trajectory of numerical modeling in energy systems is
one of increasing relevance, capability, and interdisciplinarity. As modeling
platforms become more powerful and accessible, they will continue to play
a central role in designing the energy systems of tomorrow. The challenge
lies in ensuring that these tools are used wisely—validated rigorously,
integrated meaningfully, and interpreted cautiously—to support a just,
efficient, and sustainable global energy transition [17,18]. It is imperative
that future modeling work emphasizes transparency, reproducibility, and
stakeholder engagement so that insights generated through simulations
can translate into real-world impact [19,20].

5. Conclusion

Numerical modeling has firmly established itself as a foundational
methodology in the research, development, and optimization of energy
systems across all scales and domains. This review has presented a
comprehensive exploration of the evolution, capabilities, and application of
numerical modeling techniques including computational fluid dynamics
(CFD), finite element method (FEM), and system-level transient simulation
in the context of energy conversion, distribution, and consumption. From
single-component analyses like heat exchangers and fuel cells to multi-
domain simulations of hybrid renewable systems, numerical modeling has
demonstrated unmatched versatility and depth.

The results synthesized from literature and modeled case studies
confirm that accurate and insightful simulation hinges on appropriate
model selection, mesh resolution, solver configuration, and robust
boundary condition definition. The significance of mesh independence
studies, solver sensitivity analyses, and boundary specification was
evidenced by simulation deviations observed in temperature, flow
distribution, and efficiency predictions. Tools like ANSYS Fluent, COMSOL
Multiphysics, EnergyPlus, and OpenFOAM have enabled researchers to
visualize phenomena ranging from turbulence eddies to solar irradiance
flux profiles, often offering predictive accuracy within 1-5% of
experimental data.

Key findings from this review highlight the growing utility of hybrid
modeling approaches, where physics-based solvers are augmented with
artificial intelligence to reduce computation time while retaining high
fidelity. Applications in district cooling optimization, combustion chamber
tuning, and battery thermal management have particularly benefited from
surrogate models and physics-informed neural networks. These
developments have opened new avenues for real-time simulation,
predictive maintenance, and digital twin deployment.

The integration of numerical models with economic and environmental
assessment tools also enhances their decision-making utility. Life Cycle
Assessment (LCA) and Techno-Economic Analysis (TEA) linked to
simulation outputs provide a more holistic view of sustainability and
performance trade-offs. In solar-thermal and biomass-based systems, such
combined modeling frameworks revealed opportunities to improve exergy
efficiency while minimizing CO, emissions and water consumption,
information crucial to policy and infrastructure development.

Furthermore, the review highlights the role of numerical modeling in
resilience analysis, disaster planning, and low-carbon technology
deployment. Modeling has become indispensable in simulating extreme
conditions such as pipe ruptures in CSP systems, grid failures in hybrid
microgrids, and hydrogen leak scenarios in electrolysis facilities. These
simulations have informed the design of fault-tolerant systems, emergency
shutdown protocols, and robust infrastructure able to withstand uncertain
environmental and operational challenges.
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However, the power of numerical modeling also demands
responsibility. While simulations offer tremendous potential, their
accuracy is bound by assumptions, model fidelity, and validation quality.
Poorly calibrated or over-simplified models may yield misleading
conclusions, especially when extrapolated beyond their calibration range.
This makes experimental validation, uncertainty quantification, and
transparent documentation essential practices in the responsible
application of modeling.

Equally important is the democratization of numerical tools. Open-
source platforms, cloud-based computing, and community-driven solver
development are increasingly making high-quality modeling accessible to
institutions with limited physical or financial resources. This
democratization is critical to global climate action, as it enables
developing nations and remote research groups to contribute to and
benefit from the global energy transition through simulation-based
innovation.

Looking forward, the future of numerical modeling in energy systems
is poised to be shaped by several key trends. First is the further
integration of Al and machine learning to create faster, more adaptive
solvers. Second is the development of standardized co-simulation
platforms that can seamlessly couple electrical, thermal, chemical, and
structural domains. Third is the rise of real-time digital twins and cyber-
physical systems, where simulations dynamically adapt based on live
sensor data to optimize performance or detect anomalies. Fourth is the
expansion of uncertainty-aware modeling, where probabilistic
approaches guide robust and risk-informed decision-making.

To realize this future, several enablers must be strengthened: open-
access data for validation, collaborative modeling repositories, modular
solver libraries, and interdisciplinary training programs. In particular,
fostering a generation of engineers and scientists proficient in both
physical modeling and computational techniques will be crucial.
Educational institutions and research organizations must prioritize
simulation training as a core pillar of energy science curricula.

In conclusion, numerical modeling stands not only as a tool for
understanding and predicting energy system behavior, but as a catalyst
for innovation, efficiency, and sustainability. Its role will only deepen as
energy systems grow more integrated, dynamic, and distributed. When
used responsibly and creatively, numerical models will continue to bridge
the gap between concept and reality, accelerating the path toward a
resilient, equitable, and low-carbon energy future.
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