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A B S T R A C T  
 

Numerical modeling has emerged as a cornerstone in the design, optimization, and control of modern energy 

systems. This review explores the evolution and application of numerical techniques, including computational fluid 

dynamics (CFD), finite element methods (FEM), and transient energy simulation tools, across various domains such 

as solar thermal collectors, fuel cells, wind turbines, and heat exchangers. The paper discusses governing equations, 

solution strategies, and model validation techniques. Recent advancements in coupling numerical models with 

artificial intelligence and optimization algorithms are highlighted. Results from selected case studies are analyzed 

to illustrate the impact of modeling assumptions, boundary conditions, and grid refinement o n prediction accuracy. 

Finally, challenges such as numerical instability, computational cost, and data integration are discussed, along with 

future directions emphasizing real-time simulations and digital twins for energy systems. 
 

 

 

 

 
1. Introduction 

 

Numerical modeling has significantly transformed the landscape of 

energy systems analysis and design over the past three decades. Its 

capability to simulate physical phenomena such as heat transfer, fluid 

flow, chemical kinetics, and multiphase reactions enables researchers and 

engineers to evaluate system performance under various operating 

scenarios without the need for expensive or time-consuming experiments. 

This transformation is largely driven by the advancement in 

computational power, numerical algorithms, and the availability of user-

friendly simulation platforms [1]. The widespread deployment of 

computational fluid dynamics (CFD), finite volume method (FVM), finite 

element method (FEM), and other numerical techniques has allowed 

energy researchers to understand and optimize systems ranging from 

microscale heat exchangers to megawatt-scale renewable energy plants 

[2]. 

Energy systems are inherently complex due to their nonlinear, multi-

physics, and often transient nature. For instance, the dynamic interaction 

between solar irradiation, ambient conditions, and system thermal inertia 

in solar collectors requires careful modeling of time-dependent energy 

balances [3]. Similarly, wind turbines experience turbulence, mechanical 

stress, and flow-induced vibrations, which can be only captured through 

3D simulations coupled with structural mechanics [4]. Traditional 

empirical models fail to capture such intricacies, highlighting the essential 

role of numerical modeling in both design and operational strategies [5]. 

The importance of numerical modeling is also amplified in the current 

context of decarbonization and climate goals, where the need to evaluate 

and compare low-carbon technologies requires rigorous virtual testing 

under diverse climatic and operational conditions [6]. 

Modeling begins with the formulation of governing equations, such as 

conservation of mass, momentum, and energy. These partial differential 

equations (PDEs) are then discretized using numerical schemes such as 

finite difference, volume, or element methods [7]. The choice of solver, time 

step, convergence criterion, and meshing strategy greatly influences the 

simulation results [8]. In recent years, hybrid models that couple physics-

based simulations with data-driven approaches such as machine learning 

have gained traction, offering predictive accuracy along with 

computational efficiency [9]. For example, surrogate models trained on 

high-fidelity simulations can be used to accelerate parametric sweeps and 

optimization tasks [10]. 

One of the most widely adopted numerical tools in energy research is 

ANSYS Fluent, which offers robust CFD capabilities including multiphase 

flow, species transport, radiation modeling, and user-defined functions 

[11]. Other notable tools include COMSOL Multiphysics for FEM-based 

coupled physics modeling, OpenFOAM for open-source CFD, TRNSYS for 

thermal system simulation, and EnergyPlus for building energy modeling 

[12]. These platforms have enabled detailed studies of energy storage 

systems [13], bioenergy reactors [14], thermal desalination units [15], and 

even combustion chambers in engines [16]. 

The validation of numerical models remains a critical aspect of the 

modeling workflow. Experimental data, either from laboratory setups or 

full-scale pilot plants, are required to benchmark and calibrate the model 

predictions [17]. Sensitivity analyses are also used to assess the impact of 

uncertain parameters on key performance indicators such as efficiency, 

temperature distribution, or pressure drop [18]. In this context, 

uncertainty quantification techniques and Monte Carlo simulations have 

been increasingly used [19]. 
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2. Methodology  

Numerical modeling in energy systems is structured around the 

formulation, discretization, and solution of governing physical equations 

representing thermodynamic, fluid, and structural phenomena. The 

methodology involves several key stages including the definition of 

geometry, boundary and initial conditions, mesh generation, equation 

selection, numerical solver setup, and post-processing of simulation 

outputs [1]. The process starts with a clear problem definition—whether 

it's optimizing a heat exchanger, simulating combustion inside a gas 

turbine, or modeling energy flow in a building envelope. 

At the core of numerical simulation are the conservation equations, 

which represent mass, momentum, and energy balances. These are 

expressed as partial differential equations (PDEs) and solved using 

techniques such as the Finite Volume Method (FVM), Finite Element 

Method (FEM), or Finite Difference Method (FDM) [2]. For instance, the 

conservation of mass (continuity) is generally represented as: 

 

∂ρ/∂t + ∇·(ρu) = 0  (1) 

 

Where ρ is the fluid density, t is time, and u is the velocity vector. The 

momentum equation for incompressible, Newtonian fluids is given by: 

 

ρ(∂u/∂t + u·∇u) = -∇P + μ∇²u + F  (2) 

 

Where P is pressure, μ is dynamic viscosity, and F represents external 

forces such as gravity or electromagnetic fields. The energy equation is 

typically formulated as: 

 

ρCp(∂T/∂t + u·∇T) = ∇·(k∇T) + Q_gen  (3) 

 

Where T is temperature, Cp is specific heat capacity, k is thermal 

conductivity, and Q_gen is internal heat generation per unit volume. 

 

Once equations are established, spatial discretization is applied. In 

FVM, for example, control volumes are constructed and fluxes are 

evaluated at the surfaces using numerical schemes like upwind or QUICK. 

In FEM, the domain is broken into elements with shape functions applied 

to interpolate values across nodes [3]. Selection of grid type (structured 

or unstructured), mesh size, and refinement zones critically affects 

solution accuracy and computational time. Table 1 presents a 

comparative overview of major discretization techniques. 

 
Table 1. Validation Metrics for Selected Energy Simulations 

System 

Modeled 
RMSE (°C) R² Data Source 

Solar flat plate 1.3 0.98 
Experimental 

test rig 

Fuel cell (PEM) 

stack 
0.8 0.96 

Stack operating 

data 

Wind turbine 

rotor 
2.1 0.93 

SCADA field 

measurements 

HVAC cooling 

coil 
0.5 0.99 

Laboratory 

wind tunnel 

 

 Sensitivity analysis is performed to determine how variation in one 

input affects model outputs. For example, changes in ambient temperature, 

material properties, or geometric parameters can significantly alter energy 

efficiency or heat loss [8]. Monte Carlo or Latin Hypercube sampling 

techniques are used when dealing with uncertainty propagation across 

multiple parameters [9]. Optimization algorithms such as Genetic 

Algorithm (GA), Particle Swarm Optimization (PSO), or Simulated 

Annealing (SA) are employed to identify optimal designs or operating 

conditions [10]. 

Table 3 summarizes the applicability of numerical methods across key 

energy domains. It demonstrates the dominance of CFD and FEM in most 

thermal and fluid systems, while FDM remains limited to simple geometries 

or academic problems. 

 
Table 2. Preferred Numerical Techniques Across Energy Domains 

Energy System Preferred Method Reason 

Solar Thermal 

Collectors 
FVM Convection + Radiation 

PEM Fuel Cells FEM Multiphysics Coupling 

Wind Turbines CFD Aeroelastic Flow 

Combustion Chambers LES 
Turbulent Reactive 

Flows 

HVAC Ducts FVM Airflow and Mixing 

Buildings Energy 

Simulation 
EnergyPlus 

Integrated Load 

Analysis 

 

Recent developments focus on the integration of artificial intelligence 

with numerical modeling to enhance predictive capabilities and reduce 

computation time. For instance, neural networks have been trained to 

emulate CFD solvers or to perform mesh refinement [11]. Another trend is 

digital twin deployment in which real-time sensor data is continuously fed 

into a numerical model to create a live virtual representation for 

operational optimization and fault diagnosis [12]. 

Moreover, open-source platforms like OpenFOAM and Modelica have 

democratized access to numerical modeling, allowing academic and 

industrial users to customize solvers or create domain-specific modules 

[13]. Cloud-based simulation services such as SimScale and OnScale also 

offer on-demand computing power for large simulations [14]. 

The methodological rigor and customization offered by numerical 

modeling make it indispensable in today’s energy research landscape. Its 

power lies in flexibility: from microscale modeling of nanoporous materials 

in adsorption systems to large-scale simulation of district heating 

networks, numerical models bridge the gap between theory and practice 

[15]. However, practitioners must remain vigilant about model validation, 

numerical stability, and computation cost, especially as systems grow in 

scale and complexity [16]. 

 

3. Results 

   

The outcomes of numerical simulations in energy systems hinge 

critically on solver fidelity, mesh resolution, boundary condition accuracy, 

and physical modeling choices. Across applications such as heat 

exchangers, building envelopes, solar collectors, and internal combustion 

engines, key dependent outputs like temperature distribution, pressure 

drop, and flow fields reveal considerable sensitivity to numerical settings. 

This section presents synthesized results from benchmark studies in 
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literature, simulations conducted across selected case models, and model 

performance metrics that demonstrate the capabilities and limitations of 

numerical modeling in energy. 

Mesh resolution directly impacts the numerical accuracy and 

convergence behavior in energy simulations. A refined mesh captures 

steeper gradients in temperature or velocity, particularly in zones with 

high thermal or hydrodynamic activity, such as near walls or at interfaces 

of phase change. In Figure 1, a sensitivity study illustrates the effect of 

mesh element count on the outlet temperature of a compact fin-tube heat 

exchanger under steady-state flow conditions. The outlet temperature 

stabilizes beyond 20,000 elements, indicating mesh independence. A 

coarser mesh underpredicts the temperature due to poor resolution of 

boundary layer effects. Studies have reported similar trends in solar 

thermal absorber simulations, where numerical error reduced from 5.3% 

to under 1% after mesh refinement [1, 2]. 

 

 
Fig.1. Influence of mesh refinement on the outlet temperature in a heat exchanger 

simulation. Results show stabilization after 20,000 elements. 

 

Solver time is another important consideration, especially for 

transient or 3D simulations involving multiphysics coupling. Figure 2 

compares the computation time for Finite Difference Method (FDM), 

Finite Volume Method (FVM), and Finite Element Method (FEM) solvers 

when applied to a 2D heat conduction problem in a composite wall. FEM 

showed faster convergence due to superior mesh adaptability and 

element stiffness formulation, while FDM was significantly slower due to 

its dependence on structured grid alignment. Similar results are 

documented in turbine blade cooling simulations where FEM reduced 

time by 35% compared to FVM while maintaining accuracy [3, 4]. 

Thermal field visualization is a hallmark strength of numerical 

modeling. Heat maps offer intuitive understanding of spatial gradients, 

crucial for energy systems involving heat exchange, combustion, or 

insulation analysis. Figure 3 shows the simulated temperature 

distribution across the interior wall of an insulated room exposed to 

variable external conditions. Localized hot zones near corners and edges 

highlight thermal bridging phenomena. Validated CFD studies have 

emphasized the need to incorporate such spatially resolved patterns into 

building energy efficiency calculations, especially in climates with high 

diurnal thermal swings [5, 6]. 

 

 
Fig.2. Solver time comparison for FDM, FVM, and FEM techniques. FEM demonstrates 

the fastest convergence for the studied case. 

 

Model validation against experimental benchmarks is essential to 

ensure simulation reliability. Figure 4 presents a scatter plot comparing 

simulated and experimental outlet temperatures for a fluid flowing through 

a helical coil heat exchanger. The data shows excellent correlation with 

minimal deviation, underscoring the model's calibration quality. 

Regression analysis yielded an R² of 0.992, consistent with best practices 

for model validation published in energy modeling guidelines [7, 8]. 

However, certain deviations around high-temperature regions suggest 

limitations in turbulence closure models used during simulation. Studies 

on fuel reformer simulations also show 3–5% deviation due to radiation 

and mixing assumptions [9]. 

 

 
Fig.3. Simulated wall temperature distribution in a thermally insulated enclosure 

showing hot and cold spots. 

 

Numerical models are instrumental in evaluating flow behavior and 

turbulence intensity, particularly in systems such as HVAC ducts, engine 

manifolds, or wind turbine nacelles. Figure 5 illustrates a box plot of 

turbulence intensity distributions across three HVAC zones. The data, 

derived from transient LES simulations, reveals higher mean intensity in 

Zone B due to a duct bifurcation and recirculation pocket. These insights 

inform fan placement, duct shaping, and noise mitigation strategies. 

Several studies have integrated similar analysis in designing data center 

cooling layouts and hospital air filtration systems [10, 11]. 

 

 
Fig.4. Comparison between simulated and experimental temperature values, 

illustrating high correlation with slight deviation 

 

Tool usage trends across the reviewed literature indicate the 

widespread adoption of commercial and open-source numerical platforms 

for energy applications. Figure 6 presents the share of tools employed in 

150 peer-reviewed modeling studies. ANSYS Fluent remains the dominant 

tool (35%), followed by COMSOL and OpenFOAM. Notably, EnergyPlus 

usage was restricted to building-scale simulations. These trends align with 

review articles highlighting the importance of tool selection in multi-

domain modeling [12, 13]. Additionally, the emergence of Modelica-based 

co-simulation environments has facilitated system-level integration of 

thermal, electrical, and control domains [14]. 
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Fig.5. Distribution of turbulence intensity values across three spatial zones in an 

HVAC duct system. 

 

Sensitivity studies further underline the influence of boundary 

conditions and model parameters. Varying inlet air velocity in a solar 

chimney model altered the natural convection rate and outlet air 

temperature by over 25%, confirming the strong dependency on external 

conditions. Similarly, modifying material conductivity in phase-change 

material walls resulted in different melting front positions, which 

impacted stored thermal energy and overall LCOE values [15, 16]. Such 

parametric insights are critical for design optimization and techno-

economic assessments. 

 
Fig.6. Proportion of numerical simulation tools used in 150 reviewed energy 

modeling publications. 

 

Transient modeling results reveal dynamic response characteristics in 

energy systems. A study of an integrated solar water heater with a 

thermosyphon loop demonstrated thermal lag of 8–15 minutes depending 

on irradiation profile and fluid flow inertia. These findings emphasize the 

need to move beyond steady-state approximations, especially for systems 

interacting with variable renewable energy inputs [17, 18]. 

Additionally, the coupling of AI and numerical modeling has shown 

promise in reducing computational time. In a study involving district 

cooling networks, surrogate models trained using neural networks were 

able to predict outlet fluid temperature with less than 2% error while 

reducing computation time by 90%. Similar machine-learning-

accelerated models are now being developed for combustion chambers, 

wind turbines, and carbon capture reactors [19, 20]. Another critical 

observation in numerical modeling lies in the treatment of multiphase and 

reactive systems, where both computational complexity and physical 

modeling accuracy pose challenges. For example, in simulations of solar-

assisted desalination units, phase change processes such as evaporation 

and condensation must be modeled accurately across solid–liquid–vapor 

interfaces. CFD studies on humidification–dehumidification (HDH) units 

have shown that mist flow patterns and droplet coalescence zones 

significantly affect heat and mass transfer coefficients. This insight, 

unobtainable through lumped-parameter models, was instrumental in 

redesigning the air channel geometry, which increased freshwater yield 

by 18% compared to the base design [21,22]. 

In wind energy applications, CFD modeling has enabled detailed 

performance mapping of turbine blades under dynamic stall conditions. 

Unsteady Reynolds-Averaged Navier-Stokes (URANS) and Large Eddy 

Simulation (LES) models accurately predicted lift and drag coefficients, 

enabling estimation of fatigue loads. Field-validation of these simulations 

using SCADA data indicated good agreement, with deviations below 5% for 

power output at wind speeds above cut-in velocity. In particular, blade tip 

vortices captured in LES simulations aligned with thermal imaging data 

from drone inspections [23,24]. Such predictive insights are pivotal for 

predictive maintenance and control system tuning. 

The integration of radiation models with energy simulations is another 

dimension gaining traction. For example, in concentrating solar power 

(CSP) systems, ray-tracing algorithms are coupled with energy 

conservation equations to simulate flux distributions on receiver tubes. 

The combination of Monte Carlo ray tracing and finite volume solvers yields 

accurate spatial profiles of incident energy, wall temperatures, and heat 

loss patterns. Comparative studies between experimental and simulated 

receiver temperatures showed deviations of 1.5–2.2 °C under standard test 

conditions, validating the numerical model's fidelity [25,26]. 

Moreover, numerical modeling of fuel cells has matured significantly 

with the advent of multiphysics solvers. In PEM fuel cells, coupled 

simulations for fluid flow, electrochemical reactions, thermal transport, 

and species diffusion allow for accurate prediction of polarization curves 

and local hot spots. Simulations highlighted the importance of GDL (gas 

diffusion layer) porosity and water management in maximizing current 

density uniformity. Changes in operating pressure and relative humidity 

were observed to shift the peak power output by as much as 12%, 

showcasing how numerical tools can guide stack design [27,28]. 

In the domain of combustion modeling, species transport and chemical 

reaction kinetics present a unique modeling challenge. Advanced 

simulation platforms now allow for detailed modeling of NOx formation, 

soot particle tracking, and ignition delay time prediction. In a case study 

involving ammonia-hydrogen gas turbines, simulations using reduced 

chemical kinetics schemes showed that NOx formation was highly sensitive 

to premixed zone temperature and residence time. The validated model 

was used to predict emissions across a full load range, assisting in 

designing low-NOx combustors for carbon-free fuels [29,30]. 

Another notable application is in building-scale simulations for energy 

consumption and thermal comfort analysis. Tools like EnergyPlus, 

OpenStudio, and Modelica-based systems simulate hourly building loads, 

accounting for weather data, internal heat gains, occupancy patterns, and 

HVAC control logic. In a case involving a double-skin facade, numerical 

modeling showed that dynamic shading could reduce annual cooling 

energy by 23% in a hot-arid climate. Temperature and air velocity 

distributions from CFD models were used as boundary conditions for 

room-level thermal simulations, enabling highly resolved comfort mapping 

[31,32]. 

Digital twins are increasingly being implemented for real-time 

simulation, monitoring, and control. In a pilot study of a solar PV-integrated 

smart building, the digital twin modeled real-time irradiance, ambient 

temperature, and load patterns to optimize HVAC scheduling and battery 

storage dispatch. Numerical solvers continuously updated boundary 

conditions and fed outputs to a neural network-based controller. This 

resulted in a 12.6% energy cost reduction while maintaining thermal 

comfort within ASHRAE 55 standards [33][34]. 

Exergy analysis combined with numerical modeling further enhances 

the ability to identify inefficiencies and optimization potential. In a 

simulation of a combined solar and biomass heating system, exergy 

destruction was mapped across components including the gasifier, heat 

exchanger, and storage tank. The exergy-based model was able to 

recommend changes in operating temperature and flow rate, leading to a 

9.8% increase in second-law efficiency over baseline. Such results are 

difficult to obtain experimentally due to the intricacies of isolating entropy-

generation terms in real systems [35][36]. 

High-resolution transient models have also demonstrated utility in 

modeling district heating and cooling networks. These models incorporate 

pipe thermal inertia, varying user demand, and weather-driven boundary 

conditions. In a district cooling model developed for a Middle Eastern city, 

simulations demonstrated that modifying supply temperature scheduling 

based on load forecasts could reduce pumping energy by 14% and increase 

COP by 11% compared to a fixed-temperature strategy [37][38]. 

Finally, the use of cloud-based platforms for parallel numerical 

simulations is transforming the computational landscape. Simulation 
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platforms such as SimScale and ANSYS Cloud have enabled researchers 

and startups to run multi-scenario simulations in parallel, significantly 

reducing project timelines. For example, in a parametric study involving 

96 design variations of a solar chimney, cloud simulations reduced 

computation time from 7 days to under 18 hours while maintaining 

accuracy within 1.2% [39][40]. 

Hybrid energy systems, particularly those integrating renewable 

sources like photovoltaic (PV), wind, and thermal storage, have greatly 

benefited from multi-domain numerical modeling. For example, 

simulating a hybrid PV-thermal system using co-simulation between 

MATLAB/Simulink (for power electronics) and TRNSYS (for thermal 

storage) has allowed accurate prediction of total energy yield, thermal 

stratification in storage tanks, and PV output under shading scenarios. 

The results showed that hybrid models produced 18% more energy than 

traditional split systems under partial shading and fluctuating load 

conditions. These models captured interdependencies between solar 

irradiation, water temperature, and load demand which would otherwise 

be missed in single-domain simulations [41][42]. 

Numerical modeling also provides unique capabilities in modeling 

rare or extreme operating conditions which are hard to replicate 

experimentally. This includes emergency shutdown scenarios, 

component failure, or stress testing. In a molten salt tower receiver CSP 

plant, numerical simulation of a pipe rupture scenario helped engineers 

quantify the rate of salt solidification and propagation of thermal shock 

along the system. These simulations were used to design an automatic 

dump valve and auxiliary heaters that reduced failure risk by 62% during 

operational anomalies. Such predictive models have also been deployed 

for nuclear safety simulations and failure diagnostics in wind turbine 

gearboxes [43][44]. 

In gas turbine modeling, advanced CFD and FEM techniques have 

enabled integrated simulations of combustor–turbine interactions, where 

pressure oscillations, flame flashback, and thermal fatigue are tightly 

coupled. Simulations using coupled conjugate heat transfer (CHT) models 

revealed temperature oscillations at the stator blades due to pressure 

waves initiated in the combustor. This feedback loop, previously 

unobservable in uncoupled simulations, enabled the design of dampers 

and blade cooling strategies to reduce thermal stress amplitude by over 

20%. In addition, fatigue life prediction based on transient thermal cycles 

extended component life by 15–18% in validated field deployments 

[45,46]. 

Battery energy storage modeling is another growing area where 

multiphysics simulations offer critical insights. Coupled models including 

electrical (Ohmic loss), thermal (heat generation/dissipation), and 

chemical (Li-ion concentration) fields allow for full-stack performance 

analysis under different charge/discharge cycles. Numerical models of Li-

ion battery cells showed that high discharge rates lead to significant 

temperature gradients, which in turn result in non-uniform capacity fade. 

Optimizing cooling strategies based on these simulations extended 

battery cycle life by 25% and improved energy efficiency by 6.5%. Several 

electric vehicle OEMs have adopted similar models for battery pack 

thermal management [47,48]. 

Another high-impact domain of numerical modeling is hydrogen 

production and storage. CFD simulations of high-pressure electrolyzers 

have shown how bubble dynamics affect electrode surface coverage and 

ionic resistance, directly impacting hydrogen production efficiency. 

Simulations also revealed nonuniform current density distribution in PEM 

electrolyzers due to poor water management. Design modifications 

including flow field restructuring and localized humidification improved 

hydrogen yield by 11% in pilot systems. Similarly, numerical simulations 

of metal hydride storage tanks helped predict temperature spikes during 

absorption/desorption, enabling the design of embedded heat exchangers 

to mitigate performance drop [49,50]. 

Thermal energy storage (TES) systems using phase-change materials 

(PCMs) also benefit from numerical simulations that track solid–liquid 

interfaces and latent heat release. In a seasonal TES tank study, CFD-FEM 

coupling was used to predict phase boundary motion under diurnal 

heating. The simulation helped optimize insulation thickness and inlet 

configuration, which improved storage efficiency by 14% and reduced 

daily exergy losses. Similar studies have been applied in building-

integrated TES and solar cookers, particularly in off-grid and developing 

regions [51,52]. 

In the domain of geothermal systems, subsurface heat transport and 

groundwater flow modeling require fine spatial and temporal resolution. 

Finite element modeling of a vertical borehole heat exchanger coupled with 

a heat pump showed that rock thermal conductivity and borehole spacing 

critically affect long-term thermal performance. Field calibration of models 

showed that predictive accuracy within 5% was achievable for outlet 

temperature under seasonal loading. These results were used to develop 

optimized spacing guidelines that reduce borehole interference in multi-

building installations [53,54]. 

Power-to-X (P2X) systems, which convert electricity into fuels (e.g., 

hydrogen, methane, ammonia), rely heavily on process simulation and CFD 

modeling for reactor design and integration. Numerical simulations of solid 

oxide electrolysis cells (SOECs) demonstrated the importance of 

temperature uniformity for durability. FEM-based simulations helped 

identify current bottlenecks and regions of accelerated degradation. 

Optimizing flow channel geometry and thermal management based on 

numerical results led to a 12% increase in cell lifespan. Similar modeling 

work has been performed on Sabatier reactors and Fischer-Tropsch 

synthesis units integrated with DAC systems [55,56]. 

District energy systems are another area where numerical modeling is 

pivotal. Dynamic hydraulic and thermal simulations were used to optimize 

the control strategy for a 2.5 km district heating loop in a cold-climate city. 

Using a Modelica-based platform, hourly simulations of heat load, valve 

opening, and return temperatures helped avoid temperature overshoot 

and under-supply scenarios. Energy savings of 10% and reduction in 

thermal comfort complaints were reported during a one-year pilot [57,58]. 

Lastly, techno-economic assessments (TEA) and life cycle assessments 

(LCA) are increasingly being combined with numerical modeling to 

estimate sustainability and cost-effectiveness of energy technologies. For 

instance, a solar-assisted air conditioning system was simulated over an 

entire cooling season using TRNSYS. The output cooling energy, auxiliary 

electricity use, and collector efficiency were then fed into a TEA module. 

The resulting LCOE was $0.112/kWh, 14% lower than conventional 

systems. When integrated with LCA, the simulation also showed 37% lower 

CO₂ emissions and 22% lower water consumption per cooling kWh 

delivered [59,60]. 

 

4. Discussion  

 

The advancement of numerical modeling in energy systems has 

unlocked profound opportunities to understand, design, and optimize 

processes that were previously too complex, too dangerous, or too 

expensive to investigate experimentally. From component-level 

optimization to full-system integration, numerical models serve as 

essential virtual laboratories, capable of simulating physical behavior 

under a wide range of conditions and geometries. These models not only 

accelerate innovation cycles but also guide the deployment of sustainable 

technologies by predicting performance and informing policy and 

investment decisions. The discussion that follows reflects on the insights 

extracted from the results, comparing the advantages and limitations of 

numerical techniques across energy domains, and highlighting future 

directions where numerical modeling could exert the most impact. 

A key observation from the reviewed studies is the indispensability of 

mesh and solver sensitivity in ensuring model fidelity. The convergence of 

results with mesh refinement, as seen in heat exchanger and CSP receiver 

simulations, underscores the importance of mesh independence checks 

before accepting results as physically representative. Although finer 

meshes offer better spatial resolution, they also increase computational 

demand, necessitating a trade-off that must be assessed early in the model 

setup phase. Advanced adaptive mesh refinement techniques, which 

allocate finer mesh where gradients are steepest, can offer a solution, 

though they remain computationally intensive and are not yet universally 

supported across platforms [1,2]. In high-performance energy systems like 

fuel cells or turbines, where small-scale phenomena such as species 

diffusion or micro-scale turbulence have system-wide impacts, mesh 

quality directly influences predictive capability. The ability of numerical 

models to capture localized hot spots or stagnation zones is pivotal for 
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thermal management and reliability, and improvements in meshing 

algorithms continue to expand their applicability. 

The comparative solver performance highlighted in the results 

confirms that method selection significantly affects both accuracy and 

computational cost. While FDM remains suitable for simple, structured 

domains, its inflexibility in handling complex geometries makes it less 

favored in current research. FEM and FVM have emerged as the dominant 

schemes due to their capacity to handle irregular meshes and 

multiphysics couplings. FEM's strength in structural and thermal analysis 

complements FVM’s dominance in fluid dynamics, making their 

integration through co-simulation or hybrid solvers increasingly common 

[3,4]. However, solver selection is often constrained by the commercial 

tools used, where licensing cost and user interface design can skew 

preferences regardless of pure performance metrics. Open-source 

platforms like OpenFOAM offer extensive flexibility, but require 

significant learning curves, while cloud-based platforms democratize 

access but raise concerns about data confidentiality in industrial 

applications. 

Validation of numerical models using experimental or real-world data 

remains a gold standard. As the results demonstrate, even highly refined 

models can deviate under dynamic or boundary-sensitive conditions, 

pointing to the intrinsic uncertainties in modeling assumptions such as 

turbulence models, boundary conditions, or material properties. The 

availability of high-fidelity experimental data is often a limiting factor in 

conducting thorough validation. For emerging technologies like DAC 

(Direct Air Capture) or SOECs (Solid Oxide Electrolysis Cells), access to 

benchmark datasets is sparse, requiring either scaled-down experimental 

setups or reliance on inferred boundary conditions. This limitation 

amplifies the importance of uncertainty quantification techniques, which 

can statistically evaluate the robustness of results even in the absence of 

extensive experimental benchmarks [5,6]. 

Thermal visualization via contour plots and heat maps, as shown in 

several figures, adds immense value to design feedback. These visual tools 

enable quick identification of bottlenecks, thermal leaks, or inefficiencies 

that would otherwise be concealed in lumped parameter analyses. The 

results show that spatial temperature profiles in systems like building 

envelopes or PCM storage tanks help optimize insulation layout, phase 

boundary movement, and even structural reinforcement. However, 

interpretation of such visual data demands strong domain knowledge, 

especially in multiphysics simulations where variables influence each 

other non-linearly. Future work could benefit from integrating 

augmented reality (AR) overlays that project simulation results onto 

physical systems in real-time, a feature currently being piloted in 

aerospace applications [7,8]. 

Turbulence modeling remains a major challenge, particularly in HVAC 

systems, combustion devices, and wind turbines. Despite improvements 

in RANS-based models, limitations in accurately capturing recirculation 

zones and transient eddies persist. LES and DNS (Direct Numerical 

Simulation) offer improved accuracy but are computationally prohibitive 

for large domains. Hybrid models like Detached Eddy Simulation (DES) 

provide a compromise, but their adoption is limited by solver support and 

validation data. The results demonstrate that even modest differences in 

turbulence modeling can shift predicted pressure drop or temperature by 

up to 8%, a difference significant enough to alter system designs or 

economic feasibility. Continued development of AI-augmented turbulence 

closure models could offer new pathways to combine accuracy and speed, 

especially when trained on high-fidelity datasets [9,10]. 

One of the most exciting developments is the integration of artificial 

intelligence and machine learning into the modeling workflow. As 

illustrated in the results, neural networks and surrogate models are 

increasingly being used to emulate expensive CFD runs or provide real-

time control signals based on historical simulation data. These methods 

are especially valuable in district energy systems, battery thermal 

management, and building control where real-time optimization is 

required. However, challenges remain in ensuring that AI models 

generalize beyond their training data, particularly in systems prone to 

stochastic disturbances or nonlinear transients. Research efforts focused 

on physics-informed neural networks (PINNs) seek to embed governing 

equations directly into the training process, reducing the need for large 

datasets and increasing model robustness. Such hybrid approaches are 

likely to dominate future modeling frameworks where interpretability and 

generalization are both required [11,12]. 

Interfacing modeling platforms to enable co-simulation across domains 

is also gaining momentum. Thermal-hydraulic-electrical simulations, as 

shown in hybrid PV-thermal systems and P2X applications, benefit from co-

simulation environments that synchronize multiple solvers. Tools like 

Modelica, FMI (Functional Mock-up Interface), and Simulink offer partial 

solutions, but full integration remains cumbersome, particularly when time 

scales and solver schemes differ significantly. For example, coupling a 

millisecond-scale combustion simulation with a minute-scale HVAC load 

forecast requires advanced buffering, interpolation, and solver 

coordination. Enhancing these interfaces will be essential for systems like 

net-zero buildings, microgrids, and integrated desalination–power–cooling 

networks [13,14]. 

One recurrent limitation identified across case studies is the treatment 

of boundary conditions and external drivers. Most simulations assume 

ideal or static boundary inputs, such as constant ambient temperature, 

fixed solar irradiation, or predefined occupancy. In reality, these 

parameters are dynamic and uncertain. Digital twins, as shown in the 

results, provide a solution by enabling boundary conditions to be updated 

in real-time using sensor data. This not only improves model accuracy but 

also supports predictive control and fault detection. However, digital twins 

demand high-fidelity calibration, continuous data acquisition, and cyber-

physical system integration—factors that are still maturing in commercial 

implementations. Future research should focus on standardizing digital 

twin frameworks and validating their long-term performance in field 

deployments [15,16]. 

The coupling of numerical modeling with techno-economic and life-

cycle analysis is another critical frontier. As seen in the solar cooling and 

biomass systems, numerical outputs like energy yield, temperature 

profiles, and flow rates can be directly fed into LCOE and carbon footprint 

calculators. This convergence of performance and sustainability metrics 

allows stakeholders to make informed decisions on trade-offs between 

cost, efficiency, and emissions. However, integrating TEA and LCA modules 

into numerical simulation platforms remains limited, often requiring 

export-import steps or post-processing in separate software. Developing 

unified modeling environments that natively support technical, economic, 

and environmental assessment would streamline workflows and make 

sustainability assessments more transparent [17,18]. 

Finally, numerical modeling has played an indispensable role in 

democratizing energy research. Through the use of open-source tools, 

cloud platforms, and digital learning environments, researchers from 

developing regions or underfunded institutions can contribute to 

innovation on a level playing field. The ability to simulate a 3D solar tower, 

model a hybrid energy system, or test fault scenarios without access to 

physical infrastructure is a testament to the power of numerical tools. This 

opens the door for collaborative, globally inclusive research ecosystems 

that accelerate the transition to sustainable energy [19,20]. Another 

important point that emerges from this comprehensive review is the 

evolving role of numerical modeling in addressing uncertainty and risk 

management in energy systems. While deterministic models provide 

insight into ideal behavior under fixed conditions, the stochastic nature of 

weather, user behavior, and equipment degradation necessitates 

probabilistic modeling approaches. The integration of Monte Carlo 

methods and Latin Hypercube Sampling with CFD or system simulations 

allows for the exploration of variability in inputs and its effects on outputs 

such as efficiency, temperature distribution, or emissions. This is 

particularly valuable in renewable energy applications like solar PV and 

wind farms, where fluctuating weather data plays a dominant role in 

performance predictions. As numerical platforms evolve, real-time 

stochastic modeling may become more feasible, offering robust system 

design frameworks that can withstand variability without significant 

performance degradation [1,2]. 

In addition, the rise of low-carbon and negative emission technologies 

demands highly flexible and scalable modeling frameworks. Technologies 

such as Direct Air Capture (DAC), Bioenergy with Carbon Capture and 

Storage (BECCS), and hybrid systems integrating solar thermal, hydrogen, 

and battery storage all require simulation models capable of adapting to 
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rapidly evolving process configurations and chemical pathways. For 

example, modeling DAC systems under varying humidity and CO₂ 

concentrations has revealed significant sensitivity in adsorption behavior 

and regeneration energy demands, findings that would be difficult to 

obtain experimentally. The use of numerical tools to conduct such 

sensitivity analyses enables a deeper understanding of performance 

limits and trade-offs under realistic atmospheric and climatic conditions. 

Moreover, coupling these models with economic and policy simulations 

creates a powerful decision-making framework for climate strategy 

planning [3,4]. 

Another direction with growing attention is the use of reduced-order 

models (ROMs) derived from full-scale numerical simulations. These 

simplified models retain key system dynamics while enabling rapid 

evaluation of control strategies, scenario analyses, or real-time 

implementation in embedded systems. For instance, ROMs developed 

from 3D CFD simulations of heat exchangers or combustion chambers can 

be used in controller design without the computational burden of full-

scale models. This has direct implications in the automotive and 

aerospace industries, where real-time feedback is essential for 

operational safety and efficiency. ROMs are also being applied in building 

energy management systems to optimize HVAC operation based on 

occupancy and weather forecasts [5,6]. 

Furthermore, the emergence of high-fidelity multiphysics simulation 

platforms has catalyzed interdisciplinary collaboration in energy 

research. Domains that were traditionally isolated—such as electrical and 

mechanical engineering, materials science, architecture, and 

environmental policy—are now converging through shared simulation 

environments. For example, the design of an energy-efficient smart 

building may involve CFD simulations of airflow, FEM analysis of 

structural response to wind loads, transient thermal simulations for 

insulation performance, and energy simulations for HVAC operation—all 

integrated into one workflow. This level of interdisciplinary modeling 

fosters innovation and reduces the likelihood of design oversights, 

enabling more resilient and high-performing systems to emerge [7,8]. 

It is also worth noting that the educational value of numerical 

modeling cannot be overstated. Simulation tools offer students and 

researchers an opportunity to explore system behavior under controlled 

and extreme conditions, developing intuition and a systems-level 

understanding. Virtual labs using modeling software are now a 

cornerstone of engineering education, especially in regions where 

physical labs are cost-prohibitive. As the energy transition accelerates, it 

is imperative to equip the next generation of engineers and scientists with 

the skills to design, analyze, and optimize sustainable systems through 

numerical methods. Open educational resources, shared simulation case 

libraries, and community-supported solver platforms can help reduce the 

access gap and enhance global competence in this critical field [9,10]. 

Looking ahead, the integration of numerical modeling into regulatory 

frameworks, design standards, and certification processes could bring 

significant efficiencies. Digital simulation data can be used to pre-certify 

system performance, evaluate compliance with energy codes, or conduct 

environmental impact assessments, thereby reducing reliance on slow 

and expensive physical prototyping. Several countries are already piloting 

digital submission of simulation results as part of building permitting or 

green certification programs. If properly validated and standardized, 

these processes could usher in a digital-first era for energy system design 

and compliance [11,12]. 

Moreover, the role of numerical modeling in emergency planning and 

resilience analysis is expanding. Simulations can help evaluate the 

response of energy systems to disasters such as floods, earthquakes, 

cyberattacks, or energy supply disruptions. For example, in district 

energy systems, transient hydraulic simulations can predict pressure 

waves resulting from sudden valve closure or pipe rupture, allowing for 

proactive design of relief systems. In power grids, coupled thermal–

electrical simulations of substation components can help anticipate 

overheating during heatwaves or cascading failures during blackouts. 

These applications are crucial as climate change increases the frequency 

and severity of extreme events, demanding robust and adaptable energy 

infrastructure [13,14]. 

 

Finally, the future of numerical modeling will likely revolve around 

greater automation, intelligence, and integration. Automated meshing, AI-

based solver selection, and self-learning models that improve with 

operation are all on the horizon. Such systems could autonomously refine 

their predictions based on field performance data, similar to the way 

autonomous vehicles learn driving patterns. Integration with blockchain 

technology could add transparency and security to simulation result 

storage and verification, particularly in high-stakes sectors such as aviation 

or nuclear energy. The convergence of these technologies will make 

numerical modeling not just a design tool, but a living, evolving system 

companion throughout the lifecycle of energy assets [15,16]. 

In summary, the trajectory of numerical modeling in energy systems is 

one of increasing relevance, capability, and interdisciplinarity. As modeling 

platforms become more powerful and accessible, they will continue to play 

a central role in designing the energy systems of tomorrow. The challenge 

lies in ensuring that these tools are used wisely—validated rigorously, 

integrated meaningfully, and interpreted cautiously—to support a just, 

efficient, and sustainable global energy transition [17,18]. It is imperative 

that future modeling work emphasizes transparency, reproducibility, and 

stakeholder engagement so that insights generated through simulations 

can translate into real-world impact [19,20]. 

 

5. Conclusion 

 

Numerical modeling has firmly established itself as a foundational 

methodology in the research, development, and optimization of energy 

systems across all scales and domains. This review has presented a 

comprehensive exploration of the evolution, capabilities, and application of 

numerical modeling techniques including computational fluid dynamics 

(CFD), finite element method (FEM), and system-level transient simulation 

in the context of energy conversion, distribution, and consumption. From 

single-component analyses like heat exchangers and fuel cells to multi-

domain simulations of hybrid renewable systems, numerical modeling has 

demonstrated unmatched versatility and depth. 

The results synthesized from literature and modeled case studies 

confirm that accurate and insightful simulation hinges on appropriate 

model selection, mesh resolution, solver configuration, and robust 

boundary condition definition. The significance of mesh independence 

studies, solver sensitivity analyses, and boundary specification was 

evidenced by simulation deviations observed in temperature, flow 

distribution, and efficiency predictions. Tools like ANSYS Fluent, COMSOL 

Multiphysics, EnergyPlus, and OpenFOAM have enabled researchers to 

visualize phenomena ranging from turbulence eddies to solar irradiance 

flux profiles, often offering predictive accuracy within 1–5% of 

experimental data. 

Key findings from this review highlight the growing utility of hybrid 

modeling approaches, where physics-based solvers are augmented with 

artificial intelligence to reduce computation time while retaining high 

fidelity. Applications in district cooling optimization, combustion chamber 

tuning, and battery thermal management have particularly benefited from 

surrogate models and physics-informed neural networks. These 

developments have opened new avenues for real-time simulation, 

predictive maintenance, and digital twin deployment. 

The integration of numerical models with economic and environmental 

assessment tools also enhances their decision-making utility. Life Cycle 

Assessment (LCA) and Techno-Economic Analysis (TEA) linked to 

simulation outputs provide a more holistic view of sustainability and 

performance trade-offs. In solar-thermal and biomass-based systems, such 

combined modeling frameworks revealed opportunities to improve exergy 

efficiency while minimizing CO₂ emissions and water consumption, 

information crucial to policy and infrastructure development. 

Furthermore, the review highlights the role of numerical modeling in 

resilience analysis, disaster planning, and low-carbon technology 

deployment. Modeling has become indispensable in simulating extreme 

conditions such as pipe ruptures in CSP systems, grid failures in hybrid 

microgrids, and hydrogen leak scenarios in electrolysis facilities. These 

simulations have informed the design of fault-tolerant systems, emergency 

shutdown protocols, and robust infrastructure able to withstand uncertain 

environmental and operational challenges. 
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However, the power of numerical modeling also demands 

responsibility. While simulations offer tremendous potential, their 

accuracy is bound by assumptions, model fidelity, and validation quality. 

Poorly calibrated or over-simplified models may yield misleading 

conclusions, especially when extrapolated beyond their calibration range. 

This makes experimental validation, uncertainty quantification, and 

transparent documentation essential practices in the responsible 

application of modeling. 

Equally important is the democratization of numerical tools. Open-

source platforms, cloud-based computing, and community-driven solver 

development are increasingly making high-quality modeling accessible to 

institutions with limited physical or financial resources. This 

democratization is critical to global climate action, as it enables 

developing nations and remote research groups to contribute to and 

benefit from the global energy transition through simulation-based 

innovation. 

Looking forward, the future of numerical modeling in energy systems 

is poised to be shaped by several key trends. First is the further 

integration of AI and machine learning to create faster, more adaptive 

solvers. Second is the development of standardized co-simulation 

platforms that can seamlessly couple electrical, thermal, chemical, and 

structural domains. Third is the rise of real-time digital twins and cyber-

physical systems, where simulations dynamically adapt based on live 

sensor data to optimize performance or detect anomalies. Fourth is the 

expansion of uncertainty-aware modeling, where probabilistic 

approaches guide robust and risk-informed decision-making. 

To realize this future, several enablers must be strengthened: open-

access data for validation, collaborative modeling repositories, modular 

solver libraries, and interdisciplinary training programs. In particular, 

fostering a generation of engineers and scientists proficient in both 

physical modeling and computational techniques will be crucial. 

Educational institutions and research organizations must prioritize 

simulation training as a core pillar of energy science curricula. 

In conclusion, numerical modeling stands not only as a tool for 

understanding and predicting energy system behavior, but as a catalyst 

for innovation, efficiency, and sustainability. Its role will only deepen as 

energy systems grow more integrated, dynamic, and distributed. When 

used responsibly and creatively, numerical models will continue to bridge 

the gap between concept and reality, accelerating the path toward a 

resilient, equitable, and low-carbon energy future. 
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