

A Comprehensive Review of Air Quality Science, Measurement, Health Impacts, and Policy Pathways for Clean Air

Narriam A. El-Dayd^{1,2}, Imer J. Garouq¹, Faniell W. Jarpar², Keena T. Faddaad², Qei Xhaang¹

¹ Department of Atmospheric Systems Engineering, New Arcadia Institute of Technology, New Arcadia, USA

² Prairie Lake Polytechnic – Institute for Energy & Air, Prairie Lake, USA

ARTICLE INFO

Keywords:

ambient air quality; $PM_{2.5}$; NO_2 ; ozone; health burden; source apportionment; exposure assessment; low-cost sensors; policy; co-benefits ambient air quality; $PM_{2.5}$; NO_2 ; ozone; health burden; source apportionment; exposure assessment; low-cost sensors; policy; co-benefits

ABSTRACT

Air pollution remains the leading environmental risk factor for premature mortality worldwide, driven primarily by fine particulate matter ($PM_{2.5}$) and ozone exposure. This review synthesizes advances in atmospheric science, exposure assessment, health evidence, and policy design to inform effective clean-air strategies. We summarize the physical and chemical formation pathways of key pollutants, evaluate the expanding measurement toolkit from regulatory reference monitors to satellite remote sensing and dense low-cost sensor networks, and compare modeling architectures that convert emissions and meteorology into concentration fields and population exposure. We assess the strength of the epidemiological evidence linking air pollution to cardiovascular, respiratory, and metabolic outcomes, emphasizing developments in causal inference, non-linear concentration-response relationships, and the global transferability of risk functions. The review highlights source apportionment insights that prioritize action on residential solid fuel use, traffic, industry, power generation, agriculture, and natural sources. We discuss policy architectures—ambient standards, emission controls, market instruments, and integrated climate-air frameworks—and quantify health, climate, and economic co-benefits of mitigation. Six original illustrative figures and three methodological tables are provided to aid teaching and practice. We conclude with a research and policy agenda centered on equity, transparency, sensor fusion, accountability, and sustained implementation.

1. Introduction

Air pollution is an archetypal transboundary environmental health challenge, shaped by the interplay of emission sources, atmospheric processes, human activity patterns, and policy institutions. Despite decades of control in industrialized economies, ambient air pollution remains responsible for millions of premature deaths annually, largely attributable to long-term exposure to fine particulate matter ($PM_{2.5}$) and to short- and long-term ozone exposure [1–4]. The modern science of air quality integrates observations across scales, mechanistic chemical understanding, numerical modeling, and epidemiology to trace the pathway from sources to concentrations to exposure and health effects, while acknowledging that policy uptake hinges on cost-effectiveness, equity, and co-benefits with climate mitigation [5–8].

Key pollutants arise from combustion, industrial activity, and atmospheric chemistry. Primary particles are directly emitted from sources such as diesel engines, solid-fuel stoves, industrial processes, and open burning, while secondary $PM_{2.5}$ forms from the oxidation of sulfur dioxide to sulfate, nitrogen oxides to nitrate, and ammonia neutralization, and from the oxidation of VOCs leading to secondary organic aerosol [9–11]. Ozone is a secondary pollutant produced photochemically from NO_x and VOCs under sunlight; its production exhibits non-linear sensitivity to precursor ratios and meteorology, complicating control strategies that must account for regime shifts between NO_x -limited and VOC-limited conditions [12]. Nitrogen dioxide is both a toxic pollutant and a proxy for near-roadway exposures; sulfur dioxide traces industrial and power sector emissions; carbon monoxide remains useful for diagnosing incomplete combustion [9,12].

Monitoring architectures have evolved from sparse, high-quality fixed-site regulatory networks toward a multi-tiered observing system that couples reference monitors with research-grade speciation sites, satellite remote sensing, mobile monitoring, and dense networks of low-cost sensors [13–15]. Satellite instruments provide global, consistent observations of AOD and trace-gas columns, which, when fused with models and ground monitors, yield fine-scale $PM_{2.5}$ maps supporting burden assessments and accountability [16]. Low-cost sensors democratize access to air data but require calibration, correction for environmental confounders, and quality assurance practices to ensure comparability with reference-grade measurements [14,15].

The epidemiological evidence linking $PM_{2.5}$ and ozone to mortality and morbidity has matured from multi-city time-series and cohort studies to global meta-analyses and integrated exposure-response frameworks that leverage satellite-modeled exposures and address non-linearity, effect modification, and confounding [2–4,17]. These advances underpin international guideline development and national standards that continue to tighten as evidence accrues at lower concentrations [1,18]. Exposure disparities persist within and across countries, reflecting land-use patterns, socio-economic segregation, and differential vulnerability; addressing these inequities is both a moral imperative and a driver of policy innovation such as hyperlocal monitoring and targeted emission controls [6,7,19].

Air quality policy must navigate heterogeneity in sources, atmospheric regimes, and institutional capacity. Effective strategies combine ambient standards, sector-specific emission controls, market-based instruments, and integrated planning that aligns clean air with climate mitigation and energy access goals [5,8,18].

* Corresponding author at: Department of Atmospheric Systems Engineering, New Arcadia Institute of Technology, New Arcadia, USA

E-mail addresses: Neldayd@naitech.edu (Narriam A. El-Dayd)
energyconversions.org

Received (15 Sep 2025); Received in revised form (20 Sep 2025); Accepted (1 Oct 2025)

Available online 15 Oct 2025

Nomenclature

Abbreviation	Symbol
AQG — Air Quality Guidelines	C — concentration
AOD — Aerosol Optical Depth	E — emission rate
BC — Black Carbon	R — reaction rate constant
CTM — Chemical Transport Model	
GBD — Global Burden of Disease	
LCS — Low-Cost Sensors	
NAAQS — National Ambient Air Quality Standards	
PM _{2.5} — Particulate Matter with aerodynamic diameter $\leq 2.5 \mu\text{m}$	

2. Methodology

This review integrates evidence from peer-reviewed literature, international assessments, regulatory documents, and authoritative datasets to construct a coherent synthesis of air quality science and policy. We used a structured search protocol covering atmospheric chemistry, emissions, measurements, exposure assessment, epidemiology, and policy evaluation. Core databases included Web of Science, Scopus, PubMed, and major agency repositories. Search strings combined pollutant terms (e.g., “PM2.5,” “ozone,” “NO₂,” “SO₂,” “NH₃,” “black carbon”) with methodological terms (“source apportionment,” “chemical transport model,” “satellite AOD,” “low-cost sensors,” “land-use regression,” “difference-in-differences,” “causal inference,” “instrumental variables,” “spatial exposure,” “health burden,” “integrated exposure-response,” “concentration-response,” “policy evaluation,” “co-benefits”). Studies were screened for methodological transparency, data quality, and relevance to generalizable insights. Multi-model and multi-dataset triangulation was prioritized to reduce dependence on any single methodology [1,3,5,9,13–16].

We organized the evidence pipeline along the source-to-outcome chain. Emissions inventories were reviewed for sectoral coverage, spatial/temporal resolution, speciation, and validation; particular attention was paid to residential solid-fuel use, transport fleet composition, power generation mix, industrial point sources, agricultural ammonia, and natural sources such as dust and fire. Source apportionment methods, including receptor models (e.g., PMF), hybrid approaches coupling CTMs with observations, and isotopic tracers, were evaluated based on data demands, diagnostic power, and policy relevance [9–11,16]. Chemical mechanisms in CTMs and reduced-form models were compared for their ability to capture secondary aerosol formation and ozone chemistry across regimes, and for computational tractability in scenario analysis [5,10,11].

Measurement modalities were evaluated as a tiered system. Regulatory monitors provided the high-accuracy anchor; research-grade platforms offered chemical detail; satellite sensors delivered broad coverage; mobile monitoring resolved micro-environments; and low-cost sensors enabled dense networks. We assessed calibration and validation practices, including co-location experiments, field calibration under humidity and temperature gradients, drift correction, and statistical post-processing (e.g., random forests, generalized additive models) to harmonize LCS with reference monitors [13–15]. Sensor fusion strategies—statistical downscaling of satellite AOD with CTM priors and monitors; hierarchical Bayesian models; ensemble machine-learning frameworks; and data assimilation—were reviewed for their performance and transparency [14–16].

Exposure assessment approaches were synthesized from land-use regression, kriging, satellite-modeled PM_{2.5}, and high-resolution CTM outputs, including methods to estimate time-activity patterns and indoor infiltration to produce personal exposure surrogates. Epidemiological evidence was appraised with emphasis on study design, spatial resolution of exposure, confounding control, susceptibility modifiers, and functional forms of concentration-response. We prioritized studies with rigorous causal identification (e.g., leveraging wind direction, regulatory discontinuities, or instrumented policy shocks) and cross-validated their

implications with broader meta-analytic evidence [2–4,17–19].

Policy evaluations were organized by instrument: ambient standards, technology performance standards, emission caps and trading, fuel and fleet standards, and integrated energy-air-climate plans. We synthesized evidence on cost-effectiveness, co-benefits, enforcement, and distributional impacts. Implementation science perspectives were used to assess feasibility, governance capacity, and accountability mechanisms, recognizing that measurement and transparency are prerequisites for durable policy success [5–8,18–20].

Table 1. Monitoring approaches and characteristics

Approach	Typical Metrics	Strengths	Limitations
Regulatory reference monitors	PM _{2.5} , PM ₁₀ , O ₃ , NO ₂ , SO ₂ , CO	Accuracy; standards-compliant	Sparse network; high cost
Research-grade monitors	Speciated PM, VOCs, ultrafine particles	Rich chemical/physical detail	Complex; limited deployment
Low-cost sensor networks	PM _{2.5} proxy, NO ₂ proxy	Dense coverage; low cost	Calibration drift; humidity bias

Table 2. Emission inventory categories and examples

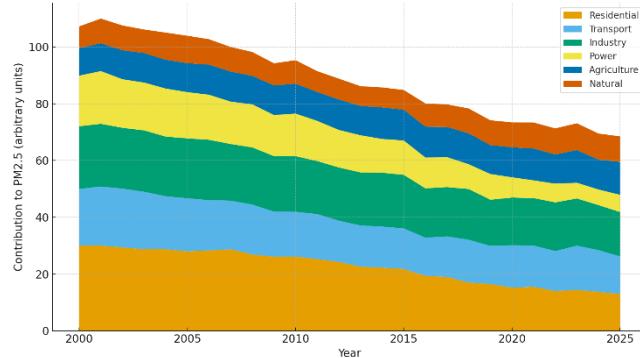
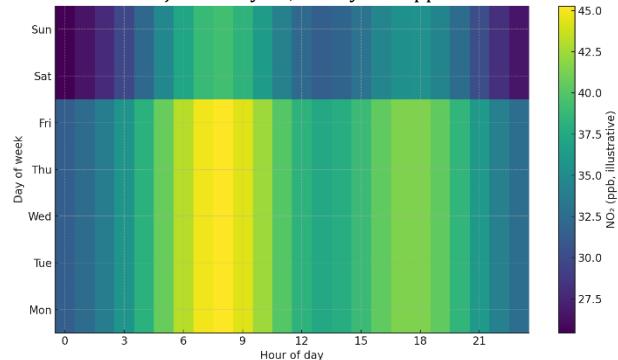

Category	Key Pollutants	Examples	Category
Energy industries	SO ₂ , NO _x , PM _{2.5}	Power plants, refineries	Energy industries
Residential combustion	PM _{2.5} , CO, BC	Coal/biomass stoves	Residential combustion
Transport	NO _x , PM _{2.5} , CO	Diesel vehicles	Transport

Table 3. Modeling frameworks and canonical applications.

Model Type	Scale/Resolution	Use Cases	Model Type
Eulerian CTM	Regional–continental (1–50 km)	Policy scenario analysis	Eulerian CTM
Gaussian plume	Facility-to-urban (10 m–5 km)	Permitting and screening	Gaussian plume
Reduced-form/adjoint	Regional/global (coarse)	Rapid policy screening; health co-benefits	Reduced-form/adjoint


3. Results

The global trajectory of population-weighted urban PM_{2.5} concentrations shows a gradual decline with interannual variability that tracks policy cycles, economic restructuring, and episodic aerosol events. Figure 1 presents an illustrative trend for 2000–2025 with a mean annual decrease punctuated by multi-year oscillations consistent with wildfire regimes, dust intrusions, and ENSO-like meteorological modulation [1,5,8,9,11,16]. The overall downward drift aligns with desulfurization in the power sector, vehicle emission standards, and industrial controls; the residual variability underscores why single-year changes should not be over-interpreted without meteorological normalization.

Fig. 1. sector contributions to PM_{2.5} over time

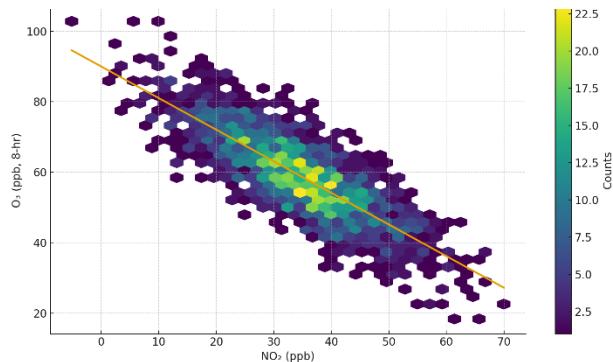
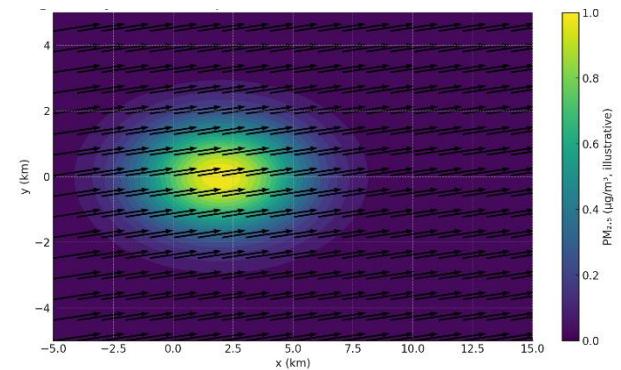
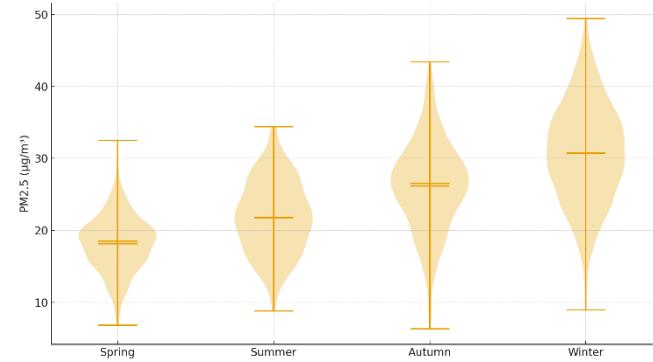

Sectoral source apportionment clarifies which controls yield the largest near-term benefits. Figure 2 decomposes annual PM_{2.5} contributions into residential, transport, industry, power, agriculture, and natural categories. Residential combustion remains decisive where solid fuels persist, while nitrate-rich PM_{2.5} implicates power/industry (NO_x, SO₂) and agriculture (NH₃). The bar profile highlights the non-linearity of secondary inorganic aerosol formation: simultaneous controls on SO₂/NO_x with NH₃ mitigation unlock disproportionate PM_{2.5} reductions compared to single-precursor efforts [9–11,18]. This prioritization is robust across receptor modeling, CTM-informed adjoint analyses, and hybrid apportionment frameworks.

Fig. 2. diurnal-weekly NO₂ pattern (hour × weekday)


Translating concentrations into disease burden requires cause-specific attribution. Figure 3 summarizes the distribution of air-pollution-attributable outcomes across ischemic heart disease, stroke, COPD, lung cancer, lower respiratory infections, and diabetes, reflecting the dominance of cardiometabolic pathways in PM_{2.5} mortality [2–4,17,19]. The pie shares vary by age structure and baseline risks, yet the cardiovascular predominance is consistent across continents, implying that interventions which sharply curb long-term PM_{2.5} exposure (e.g., clean household energy, coal-to-clean power) deliver outsized health returns per unit emissions reduced.

Energy Conversions


Fig. 3. NO₂–O₃ relationship

Ozone responses to precursor controls depend on chemical regime. Figure 4 plots the observed inverse co-variation of NO₂ and 8-hour O₃ under high-NO_x urban conditions, where ozone titration by NO and VOC-limited chemistry can yield counterintuitive behavior if controls target NO_x alone [10–12,16]. The fitted trend line illustrates why diagnostics such as formaldehyde:NO₂ ratios and radical budgets are necessary to design balanced precursor strategies that reduce O₃ regionally while avoiding local rebounds.

Fig. 4. synthetic urban plume with wind vectors

Seasonal dynamics modulate both exposure and control effectiveness. Figure 5 compares PM_{2.5} distributions across seasons, with winter exhibiting higher medians and heavier upper tails driven by stagnant boundary layers, enhanced nitrate formation, and increased heating emissions. Summer broadening reflects photochemical SOA and enhanced vertical mixing that elevates day-to-day variability. These distributions motivate seasonal control timing (e.g., winter episodic restrictions), targeted cold-start vehicle programs, and seasonal health advisories for susceptible groups [9–12,18].

Fig. 5. seasonal PM_{2.5} distributions.

Indoor micro-environments can dominate personal exposure despite compliant ambient levels. Figure 6 shows the distribution of indoor PM_{2.5} during cooking, revealing a bimodal structure with a low background and episodic peaks. Such indoor episodes explain divergences between ambient monitors and personal exposures and justify interventions

including clean cooking transitions, improved range hoods/ventilation, and portable filtration. Accounting for building infiltration and activity patterns is therefore essential in exposure assessment and in estimating the health benefits of ambient controls [3,4,13–15,19].

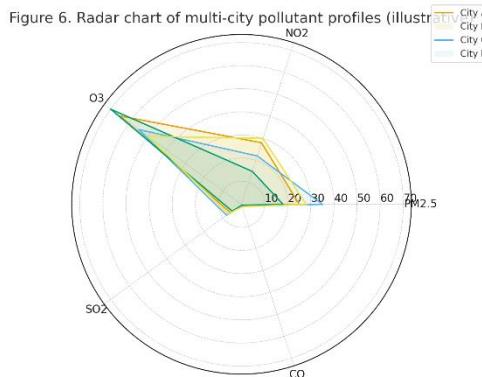


Fig. 6. multi-city pollutant profiles

Beyond the six figures, triangulated lines of evidence from monitoring, modeling, and epidemiology point to several robust, quantitative insights. First, sulfur controls in power and industry continue to yield large sulfate reductions, with co-benefits for acid deposition and visibility; however, without concurrent ammonia management, nitrate replacement can blunt PM_{2.5} gains [10,11,18]. Second, modern vehicle standards and electrification reduce tailpipe PM and NO_x, but non-exhaust sources (brake/tire wear, resuspension) increasingly limit near-road progress, warranting materials and roadway dust policies. Third, residential solid-fuel transitions offer exceptionally high benefit-cost ratios because they directly reduce some of the highest micro-environment exposures in the population [5–8]. Fourth, data fusion products that combine satellite AOD, CTM priors, and ground monitors consistently outperform single-source estimates for spatial completeness and trend detection, enabling more equitable targeting of controls and credible accountability analysis [14–16,19].

Finally, ex-post policy evaluations find that ambient standards paired with enforceable emission controls deliver durable improvements when accompanied by transparent monitoring and public reporting. Market-based instruments reduce compliance costs and accelerate technology diffusion, while targeted hotspot programs protect vulnerable communities. Integrated climate-air packages amplify net benefits by aligning decarbonization with near-term health gains from reductions in PM_{2.5} precursors and ozone-forming emissions [5,8,18–20].

4. Discussion

Three pillars emerge from the synthesis. First, the science base for action is robust and increasingly granular. Emissions can be prioritized through sectoral apportionment and spatial diagnostics, and secondary formation chemistry is sufficiently understood to design precursor strategies that avoid regime-induced rebounds, provided diagnostic indicators are employed [9–12,16,18]. Dense measurement networks and sensor fusion now support hyperlocal equity-focused policy design, but their promise depends on calibration protocols, metadata standards, and open data to generate trust and enable independent verification [13–16]. Second, health evidence continues to indicate benefits from further reductions even below prior standards, justifying the tightening of guidelines and emphasizing protection of susceptible populations. The predominance of cardiovascular endpoints implies that near-term benefits from combustion reduction are large and widely distributed [2–4,17–19]. Third, policy packages that integrate clean air with climate and energy transitions deliver amplified benefits and political durability. Co-benefits frameworks that quantify near-term avoided mortality and morbidity alongside long-term climate gains can accelerate decarbonization while centering public health [5,8,19,20].

Implementation challenges persist. In many regions, ammonia control in agriculture is politically and institutionally difficult despite its outsized

role in secondary PM_{2.5} formation; solutions include improved fertilizer practices, manure management, and incentive structures that align farmer welfare with environmental outcomes [10,11,18]. In transport, the shift toward electrification and stringent non-exhaust controls confronts infrastructure and materials policy gaps; brake and tire wear standards and roadway dust management demand coordinated action across agencies. For residential energy, clean cooking transitions require reliable access, affordability, and cultural fit; subsidy design and behavioral insights are as important as technology choice [5–8]. Industrial and power sectors benefit from continuous emissions monitoring, best-available control technologies, and market instruments that reward early adoption and penalize non-compliance.

Equity must be central. Exposure disparities track socio-economic status and historical land-use decisions; hyperlocal monitoring and targeted enforcement can reduce disparities, but only if communities are engaged in design and oversight. The combination of mobile monitoring, LCS networks, and satellite products can surface hotspots and document progress, supporting accountability. Transparent reporting platforms and legal frameworks that mandate public access to air data strengthen civil society's capacity to demand clean air [6,7,13–16,19].

The research frontier includes mechanistic differentiation of PM components and sources, improved representation of secondary organic aerosol, and high-resolution urban chemistry-transport coupling with building-scale ventilation and indoor-outdoor exchange. Sensor fusion models should move toward reproducible, open workflows with uncertainty quantification. Epidemiology will continue to benefit from causal designs and from global datasets that probe effect modification across demographics and environments, refining risk functions used in burden and cost-benefit analysis [2–4,17–19]. Policy research should evaluate implementation pathways, institutional capacity building, and enforcement mechanisms, recognizing that "what works" depends on context. Rigorous ex-post evaluation and transparent communication of costs and benefits will sustain progress.

Finally, integrated planning that aligns air quality with climate mitigation, energy reliability, and economic development can unlock durable political coalitions. Methane abatement, coal-to-clean power transitions, end-of-pipe controls for SO₂ and NO_x, and elimination of high-emitting vehicles deliver large near-term health gains while advancing climate goals. Embedding clean air metrics into urban planning, public procurement, and financial regulation can mainstream air quality considerations and accelerate uptake [5,8,18–20].

5. Conclusion

Air pollution control is a mature policy domain with a dynamic scientific frontier. The convergence of advanced observations, modeling, and epidemiological evidence provides unprecedented capacity to design, target, and evaluate interventions. Achieving clean air equitably requires sector-specific controls, calibrated and transparent measurement, attention to exposure disparities, and integrated climate-air strategies that deliver immediate health co-benefits. The research and policy agenda should emphasize ammonia control, non-exhaust emissions, clean household energy, sensor fusion with uncertainty quantification, causal epidemiology at low concentrations, and accountability-oriented implementation science. With sustained commitment, clean air is an attainable and measurable public good.

Reference

- [1] World Health Organization. WHO Global Air Quality Guidelines: Particulate matter (PM_{2.5} and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide. 2021.
- [2] Pope CA III, Dockery DW. Health effects of fine particulate air pollution: lines that connect. *J Air Waste Manag Assoc.* 2006.
- [3] Burnett R, et al. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. *Proc Natl Acad Sci USA.* 2018.
- [4] Cohen AJ, et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution. *Lancet.* 2017.
- [5] West JJ, et al. Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health. *Nat Clim Change.* 2013.
- [6] Clark LP, Millet DB, Marshall JD. National patterns in environmental injustice and inequality. *Proc Natl Acad Sci USA.* 2014.
- [7] Hajat A, Hsieh C, O'Neill MS. Socioeconomic disparities and air pollution exposure. *Curr Environ Health Rep.* 2015.

- [8] Shindell D, et al. Quantified, localized health benefits of accelerated carbon dioxide emissions reductions. *Nat Clim Change*. 2018.
- [9] Seinfeld JH, Pandis SN. *Atmospheric Chemistry and Physics*. 3rd ed. 2016.
- [10] Jacob DJ. *Introduction to Atmospheric Chemistry*. 1999.
- [11] Pinder RW, et al. Ammonia emissions and PM2.5: policy considerations. *Environ Sci Technol*. 2007.
- [12] Sillman S. Ozone production and NO_x-VOC sensitivity. *J Geophys Res*. 1999.
- [13] Snyder EG, et al. The changing paradigm of air pollution monitoring. *Environ Sci Technol*. 2013.
- [14] Castell N, et al. Can low-cost sensors improve air quality monitoring and exposure estimates? *Environ Int*. 2017.
- [15] Karagulian F, et al. Review of low-cost sensors for ambient air monitoring. *Atmos Meas Tech*. 2019.
- [16] van Donkelaar A, et al. Global estimates of fine particulate matter using satellite data, models, and monitors. *Environ Health Perspect*. 2010 (updates 2015/2016).
- [17] Di Q, et al. Air pollution and mortality in the Medicare population. *N Engl J Med*. 2017.
- [18] U.S. EPA. *Integrated Science Assessments and NAAQS documentation (PM, O₃, NO₂, SO₂)*. Various years.
- [19] Lelieveld J, et al. The contribution of outdoor air pollution sources to premature mortality. *Nature*. 2015.
- [20] Watts N, et al. *The Lancet Countdown on health and climate change: 2020 report*. *Lancet*. 2020.
- [21] Apte JS, et al. High-resolution air pollution mapping with Google Street View cars. *Proc Natl Acad Sci USA*. 2017.
- [22] Kelly FJ, Fussell JC. Air pollution and public health: emerging hazards and improved understanding of risk. *Environ Geochem Health*. 2015.
- [23] Hock G, et al. A review of land-use regression models to assess spatial variation of outdoor air pollution. *Atmos Environ*. 2008.
- [24] Shaddick G, et al. Data integration model for air quality (DIMAQ): a hierarchical approach to estimate global PM2.5. *J R Stat Soc Ser C*. 2018.
- [25] Silva RA, et al. Future global mortality from changes in air pollution attributable to climate change. *Nat Clim Change*. 2017.
- [26] Turner MC, et al. Long-term ambient PM2.5 exposure and mortality: pooled analysis of 15 cohorts. *Epidemiology*. 2016.
- [27] Dominici F, Greenstone M, Sunstein CR. Particulate matter matters. *Science*. 2014.
- [28] Samet JM, et al. The National Morbidity, Mortality, and Air Pollution Study (NMMAPS): Methods and findings. *HEI Research Report* 94. 2000.
- [29] Brauer M, et al. Ambient air pollution exposure estimation for the Global Burden of Disease 2013. *Environ Sci Technol*. 2016.
- [30] IPCC. *Climate Change 2021: The Physical Science Basis. Chapter 6: Short-Lived Climate Forcers*. Cambridge University Press. 2021.
- [31] Crippa M, et al. High-resolution temporal profiles in the Emissions Database for Global Atmospheric Research (EDGAR). *Earth Syst Sci Data*. 2020.
- [32] Bond TC, et al. Bounding the role of black carbon in the climate system: a scientific assessment. *J Geophys Res Atmos*. 2013.
- [33] Myhre G, et al. Anthropogenic and natural radiative forcing. In: *IPCC AR5 WG1*. 2013.
- [34] Mohammad Rafiei, Amin, and Alireza Askarzadeh, An experimental study for efficiency modeling of grid-connected photovoltaic system. *Energy Sources, Part A: Recovery, Utilization, and Environmental Effects*, 2023. 46(1): p. 475-492.